Синтез та характеристика β-Ga2O3/por-GaAs/mono-GaAs гетероструктур для покращених портативних сонячних елементів
DOI:
https://doi.org/10.15330/pcss.25.3.546-552Ключові слова:
β-Ga2O3, por-GaAs, mono-GaAs, гетероструктура, сонячні елементи, електрохімічне травлення, окислення киснем, XRD, SEM, раманівська спектроскопіяАнотація
У даному дослідженні детально описано успішний синтез β-Ga2O3/por-GaAs/mono-GaAs гетероструктури, розробленої для портативних сонячних елементів. Застосовуючи комбінацію електрохімічного травлення та високотемпературного окислення киснем, ми створили гетероструктуру, яка має як кристалічні, так і аморфні фази. Аналізи за допомогою рентгенівської дифракції (XRD), скануючої електронної мікроскопії (SEM) та раманівської спектроскопії підтвердили утворення кристалічних фаз β-Ga2O3 та GaAs, причому пористість у шарі GaAs підвищує поглинання світла та збір заряду. Потенціал гетероструктури для покращення фотогальванічних характеристик обумовлений властивою стабільністю Ga2O3 та збільшеною площею поверхні, забезпеченою пористим GaAs.
Посилання
A. Shahsavari and M. Akbari, Potential of solar energy in developing countries for reducing energy-related emissions, Renew. Sustain. Energy Rev. 90, 275 (2018); https://doi.org/10.1016/j.rser.2018.03.065.
T. Güney, Solar energy, governance and CO2 emissions, Renew. Energy 184, 791 (2022); https://doi.org/10.1016/j.renene.2021.11.124.
D. Freier, R. Ramirez-Iniguez, T. Jafry, F. Muhammad-Sukki, and C. Gamio, A review of optical concentrators for portable solar photovoltaic systems for developing countries, Renew. Sustain. Energy Rev. 90, 957 (2018); https://doi.org/10.1016/j.rser.2018.03.039.
N.C. Nicolaidis, P.V. Hollott, B. Stanwell, I.A. Gill, J.E. Bull, S. Bentsen, J. Iredale, T.M. Pappenfus, P.C. Dastoor, K. Feron, M.J. Griffith, and N.P. Holmes, Developing a Portable Organic Solar Cell Kit Suitable for Students to Fabricate and Test Solar Cells in the Laboratory, J. Chem. Educ. 97(10), 3751 (2020); https://doi.org/10.1021/acs.jchemed.9b00941.
J. Liu, T. Ye, D. Yu, S. Liu, and D. Yang, Recoverable Flexible Perovskite Solar Cells for Next‐Generation Portable Power Sources, Angew. Chem. Int. Ed. 2023. https://doi.org/10.1002/anie.202307225.
Q. Chen, X. Li, Z. Zhang, C. Zhou, Z. Guo, Z. Liu, and H. Zhang, Remote sensing of photovoltaic scenarios: Techniques, applications and future directions, Appl. Energy 333, 120579 (2023); https://doi.org/10.1016/j.apenergy.2022.120579.
Y. Suchikova, Provision of environmental safety through the use of porous semiconductors for solar energy sector, Eastern-European J. Enterp. Technol. 6(5 (84)), 26 (2016); https://doi.org/10.15587/1729-4061.2016.85848.
A. Richter, R. Müller, J. Benick, F. Feldmann, B. Steinhauser, C. Reichel, A. Fell, M. Bivour, M. Hermle, and S. W. Glunz, Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses, Nat. Energy 6(4), 429 (2021); https://doi.org/10.1038/s41560-021-00805-w.
L. V. Mercaldo and P. Delli Veneri, Silicon solar cells: materials, technologies, architectures, Solar Cells and Light Management, 35 (2020); https://doi.org/10.1016/b978-0-08-102762-2.00002-1.
G. Khrypunov, S. Vambol, N. Deyneko, and Y. Sychikova, Increasing the efficiency of film solar cells based on cadmium telluride, Eastern-European J. Enterp. Technol. 6(5 (84)), 12 (2016); https://doi.org/10.15587/1729-4061.2016.85617.
Y. Suchikova, S. Kovachov, I. Bohdanov, E. Popova, A. Moskina, and A. Popov, Characterization of CdxTeyOz/CdS/ZnO Heterostructures Synthesized by the SILAR Method, Coatings 13(3), 639 (2023); https://doi.org/10.3390/coatings13030639.
A. Tarbi, T. Chtouki, A. Bouich, Y. Elkouari, H. Erguig, A. Migalska-Zalas, and A. Aissat, InP/InGaAsP thin films based solar cells: Lattice mismatch impact on efficiency, Opt. Mater. 131, 112704 (2022); https://doi.org/10.1016/j.optmat.2022.112704.
Y. Suchikova, V. Kidalov, and G. Sukach, Blue Shift of Photoluminescence Spectrum of Porous InP, ECS Trans. 25(24), 59 (2019); https://doi.org/10.1149/1.3316113.
V. Raj, F. Rougieux, L. Fu, H. H. Tan, and C. Jagadish, Design of Ultrathin InP Solar Cell Using Carrier Selective Contacts, IEEE J. Photovolt. 10(6), 1657 (2020); https://doi.org/10.1109/jphotov.2019.2961615.
V. Raj, T. Haggren, J. Tournet, H. H. Tan, and C. Jagadish, Electron-Selective Contact for GaAs Solar Cells, ACS Appl. Energy Mater. 4(2), 1356 (2021); https://doi.org/10.1021/acsaem.0c02616.
S. Vambol, I. Bogdanov, V. Vambol, Y. Suchikova, H. Lopatina, and N. Tsybuliak, Research into effect of electrochemical etching conditions on the morphology of porous gallium arsenide, Eastern-European J. Enterp. Technol. 6(5 (90)), 22 (2017); https://doi.org/10.15587/1729-4061.2017.118725.
Y.O. Suchikova, I.T. Bogdanov, S.S. Kovachov, D.V. Kamensky, V.O. Myroshnychenko, and N.Y. Panova, Optimal ranges determination of morphological parameters of nanopatterned semiconductors quality for solar cells, Arch. Mater. Sci. Eng. 1(101), 15 (2020); https://doi.org/10.5604/01.3001.0013.9502.
J.S. Mangum, S. Theingi, M.A. Steiner, W.E. McMahon, and E.L. Warren, Development of High-Efficiency GaAs Solar Cells Grown on Nanopatterned GaAs Substrates, Cryst. Growth & Des. (2021); https://doi.org/10.1021/acs.cgd.1c00835.
M. A. Steiner, R. M. France, J. Buencuerpo, J. F. Geisz, M. P. Nielsen, A. Pusch, W. J. Olavarria, M. Young, and N. J. Ekins‐Daukes, High Efficiency Inverted GaAs and GaInP/GaAs Solar Cells With Strain‐Balanced GaInAs/GaAsP Quantum Wells, Adv. Energy Mater., 2002874 (2020); https://doi.org/10.1002/aenm.202002874.
W.-W. Zhang, H. Qi, Y.-K. Ji, M.-J. He, Y.-T. Ren, and Y. Li, Boosting photoelectric performance of thin film GaAs solar cell based on multi-objective optimization for solar energy utilization, Sol. Energy 230, 1122 (2021); https://doi.org/10.1016/j.solener.2021.11.031.
Z.T. Karipbayev, K. Kumarbekov, I. Manika, A. Dauletbekova, A.L. Kozlovskiy, D. Sugak, S. B. Ubizskii, A. Akilbekov, Y. Suchikova, and A.I. Popov, Optical, Structural, and Mechanical Properties of Gd3Ga5O12 Single Crystals Irradiated with 84 Kr+ Ions, Phys. Status Solidi (B), 2100415 (2022); https://doi.org/10.1002/pssb.202100415.
A. Usseinov, Z. Koishybayeva, A. Platonenko, V. Pankratov, Y. Suchikova, A. Akilbekov, M. Zdorovets, J. Purans, and A. I. Popov, Vacancy Defects in Ga2O3: First-Principles Calculations of Electronic Structure, Materials, 14(23), 7384 (2021); https://doi.org/10.3390/ma14237384.
Y. Jiang, T. Feurer, R. Carron, G. T. Sevilla, T. Moser, S. Pisoni, R. Erni, M. D. Rossell, M. Ochoa, R. Hertwig, A.N. Tiwari, and F. Fu, High-Mobility In2O3:H Electrodes for Four-Terminal Perovskite/CuInSe2 Tandem Solar Cells, ACS Nano 14(6), 7502 (2020); https://doi.org/10.1021/acsnano.0c03265.
W. Gong, G. Wang, Y. Gong, L. Zhao, L. Mo, H. Diao, H. Tian, W. Wang, J. Zong, and W. Wang, Investigation of In2O3:SnO2 films with different doping ratio and application as transparent conducting electrode in silicon heterojunction solar cell, Sol. Energy Mater. Sol. Cells 234, 111404 (2022); https://doi.org/10.1016/j.solmat.2021.111404.
Y. Suchikova, A. Lazarenko, S. Kovachov, A. Usseinov, Z. Karipbaev, and A. I. Popov, Formation of porous Ga2O3/GaAs layers for electronic devices, in 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 22–26 February 2022 (IEEE, 2022). https://doi.org/10.1109/tcset55632.2022.9766890.
A. Usseinov, Z. Koishybayeva, A. Platonenko, A. Akilbekov, J. Purans, V. Pankratov, Y. Suchikova, and A. I. Popov, Ab-Initio Calculations of Oxygen Vacancy in Ga2O3 Crystals, Latv. J. Phys. Tech. Sci. 58(2), 3 (2021); https://doi.org/10.2478/lpts-2021-0007.
M.E. Ayhan, M. Shinde, B. Todankar, P. Desai, A. K. Ranade, M. Tanemura, and G. Kalita, Ultraviolet radiation-induced photovoltaic action in γ-CuI/β-Ga2O3 heterojunction, Mater. Lett. 262, 127074 (2020); https://doi.org/10.1016/j.matlet.2019.127074.
M. Yu, C. Lv, J. Yu, Y. Shen, L. Yuan, J. Hu, S. Zhang, H. Cheng, Y. Zhang, and R. Jia, High-performance photodetector based on sol–gel epitaxially grown α/β Ga2O3 thin films, Mater. Today Commun. 25, 101532 (2020); https://doi.org/10.1016/j.mtcomm.2020.101532.
Y. Suchikova, S. Kovachov, I. Bohdanov, Z. T. Karipbaev, V. Pankratov, and A. I. Popov, Study of the structu-ral and morphological characteristics of the CdxTeyOz nanocomposite obtained on the surface of the CdS/ZnO heterostructure by the SILAR method, Appl. Phys. A 129(7) (2023); https://doi.org/10.1007/s00339-023-06776-x.
E. Assmann, P. Blaha, R. Laskowski, K. Held, S. Okamoto, and G. Sangiovanni, Oxide Heterostructures for Efficient Solar Cells, Phys. Rev. Lett. 110(7) (2013); https://doi.org/10.1103/physrevlett.110.078701.
D.O. Idisi and B. Mwakikunga, Two-dimensional layered metal dichalcogenides-based heterostructures for solar cells applications: A review, Sol. Energy 263, 111981 (2023); https://doi.org/10.1016/j.solener.2023.111981.
T. Niu, Y. Xie, Q. Xue, S. Xun, Q. Yao, F. Zhen, W. Yan, H. Li, J. Brédas, H. Yip, and Y. Cao, Spacer Engineering of Diammonium‐Based 2D Perovskites toward Efficient and Stable 2D/3D Heterostructure Perovskite Solar Cells, Adv. Energy Mater. 12(2), 2102973 (2021); https://doi.org/10.1002/aenm.202102973.
Y. Deng, Z. Yang, T. Xu, H. Jiang, K. W. Ng, C. Liao, D. Su, Y. Pei, Z. Chen, G. Wang, and X. Lu, Band alignment and electrical properties of NiO/β-Ga2O3 heterojunctions with different β-Ga2O3 orientations, Appl. Surf. Sci. 622, 156917 (2023); https://doi.org/10.1016/j.apsusc.2023.156917.
B. Alhalaili, H. Mao, D. M. Dryden, H. Cansizoglu, R. J. Bunk, R. Vidu, J. Woodall, and M. S. Islam, Influence of Silver as a Catalyst on the Growth of β-Ga2O3 Nanowires on GaAs, Materials 13(23), 5377 (2020); https://doi.org/10.3390/ma13235377.
L. Lazzarini, L. Nasi, G. Salviati, C. Z. Fregonara, Y. Li, L. J. Giling, C. Hardingham, and D. B. Holt, Antiphase disorder in GaAs/Ge heterostructures for solar cells, Micron 31(3), 217 (2000); https://doi.org/10.1016/s0968-4328(99)00086-4.
N. Nepal, D. S. Katzer, B. P. Downey, V. D. Wheeler, L. O. Nyakiti, D. F. Storm, M. T. Hardy, J. A. Freitas, E. N. Jin, D. Vaca, L. Yates, S. Graham, S. Kumar, and D. J. Meyer, Heteroepitaxial growth of β-Ga2O3 films on SiC via molecular beam epitaxy, J. Vac. Sci. & Technol. A 38(6), 063406 (2020); https://doi.org/10.1116/6.0000452.
K. Kaneko, K. Uno, R. Jinno, and S. Fujita, Prospects for phase engineering of semi-stable Ga2O3 semiconductor thin films using mist chemical vapor deposition, J. Appl. Phys. 131(9), 090902 (2022); https://doi.org/10.1063/5.0069554.
S.I. Rybchenko, S. Ali, Y. Zhang, and H. Liu, Resonant enhancement of Raman scattering by surface phonon polaritons in GaAs nanowires, J. Phys. D 54(47), 475111 (2021); https://doi.org/10.1088/1361-6463/ac1a32.
S. Hasegawa, N. Hasuike, K. Kanegae, H. Nishinaka, and M. Yoshimoto, Raman scattering study of photoexcited plasma in GaAsBi/GaAs heterostructures: Influence of carrier confinement on photoluminescence, Mater. Sci. Semicond. Process. 162, 107543 (2023); https://doi.org/10.1016/j.mssp.2023.107543.
J. Grümbel, R. Goldhahn, D.-W. Jeon, and M. Feneberg, Anharmonicity of lattice vibrations in thin film α-Ga2O3 investigated by temperature dependent Raman spectroscopy, Appl. Phys. Lett. 120(2), 022104 (2022); https://doi.org/10.1063/5.0074260.
J.-H. Yoo, S. Rafique, A. Lange, H. Zhao, and S. Elhadj, Lifetime laser damage performance of β-Ga2O3 for high power applications, APL Mater. 6(3), 036105 (2018); https://doi.org/10.1063/1.5021603.
Y. Suchikova, S. Kovachov, and I. Bohdanov, Formation of oxide crystallites on the porous GaAs surface by electrochemical deposition, Nanomater. Nanotechnol. 12, 184798042211273 (2022); https://doi.org/10.1177/18479804221127307.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2024 Yana Suchikova, Serhii Kovachov, Ihor Bohdanov, Dariya Drozhcha, Ivan Kosogov, Zhakyp T. Karipbayev, Anatoli I. Popov
Ця робота ліцензованаІз Зазначенням Авторства 3.0 Міжнародна.