Синергетичні властивості масивів нанодротів β-Ga2O3
DOI:
https://doi.org/10.15330/pcss.24.1.56-63Ключові слова:
β-Ga2O3, масиви нанодротів, функціонал електронної густини, ab initio псевдопотенціал, розподіл густини валентних електронів, розподіл густини електронних станів, Кулонівський потенціал, синергетичні властивостіАнотація
Методами теорії функціоналу електронної густини та ab initio псевдопотенціалу розраховано просторові розподіли густини валентних електронів, розподіли густини електронних станів та Кулонівські потенціали вздовж визначених напрямків у межах масивів нанодротів β-Ga2O3 різних форм перерізу та розташування один відносно одного. Встановлені синергетичні властивості масивів дротів, визначена ступінь впливу дротів один на одного в залежності від геометричних параметрів їх взаємного розташування в масиві та електронні характеристики масиву дротів як єдиного цілого.
Посилання
B. Cheng, E. T. Samulski, Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3, Journal of Materials Chemistry, 11, 2901 (2001); https://doi.org/10.1039/B108167E.
B. Zhang, P.-X. Gao, Metal oxide nanoarrays for chemical sensing: a review of fabrication methods, sensing modes, and their inter-correlations, Front. Mater. 6(55) (2019); https://doi.org/10.3389/fmats.2019.00055.
Y. Zhang, J. Yang; Q. Li, X. Cao, Preparation of Ga2O3 nanoribbons and tubes by electrospinning, J. Cryst. Growth, 308, 180 (2007); https://doi.org/10.1016/j.jcrysgro.2007.07.036.
N. W. Gong, M. Y. Lu, C. Y. Wang, Y. Chen, L. J. Chen, Au(Si)-filled β-Ga2O3 nanotubes as wide range high-temperature nanothermometers. Appl. Phys. Lett., 92, 073101 (2008); https://doi.org/10.1063/1.2840574.
H. Jiang, Y. Chen, Q. Zhou, Y. Su, H. Xiao, L. Zhu, Temperature dependence of Ga2O3 micro/nanostructures via vapor phase growth, Mater. Chem. Phys., 103, 14 (2007); https://doi.org/10.1016/j.matchemphys.2007.02.031.
T. Braniste, and et al., Aero-Ga2O3 Nanomaterial Electromagnetically Transparent from Microwaves to Terahertz for Internet of Things Applications, Nanomaterials, 10(6), 1047 (2020); https://doi.org/10.3390/nano10061047.
Ziyao Zhou, Changyong Lan, SenPo Yip, Renjie Wei, Dapan Li, Lei Shu, Johnny C. Ho, Towards high-mobility In2xGa2–2xO3 nanowire field-effect transistors, Nano Research, 11 (11), 5935 (2018); https://doi.org/10.1007/s12274-018-2106-9
G. F. Yang, and et al. Fabrication of GaN Nanocolumns with Semipolar Plane Using Ni nano-island masks, Semicond. Technol., 36, 417 (2011).
H. S. Kim, G. Y. Yeom, J. W. Lee, T. I. Kim, Characteristics of inductively coupled Cl2/BCl3 plasmas during GaN etching, J. Vac. Sci. Technol. A, 17, 2214 (1999); https://doi.org/10.1116/1.581749.
M. Y. Hsieh, C. Y. Wang, L. Y. Chen, M. Y. Ke, J. Huang, InGaN-GaN nanorod light emitting arrays fabricated by silica nanomasks, IEEE J. Quantum Electron., 44, 468 (2008); https://doi.org/10.1109/JQE.2007.916665
J. Lin, R. Zong, M. Zhou, Y. Zhu, Photoelectric catalytic degradation of methylene blue by C60-modified TiO2 nanotube array, Appl. Catal. B Environ., 89, 425 (2009); https://doi.org/10.1016/j.apcatb.2008.12.025.
T. J. Hsueh, S. J. Chang, C. L. Hsu, Y. R. Lin, I. C. Chen, ZnO nanotube ethanol gas sensors, J. Electrochem. Soc., 155, K152 (2008); https://iopscience.iop.org/article/10.1149/ 1.2952535.
A. Star, Y. Lu, K. Bradley, G. Grüner, Nanotube optoelectronic memory devices, Nano Lett., 4, 1587 (2004); https://doi.org/10.1021/nl049337f.
J. Han, Z. Liu, K. Guo, B. Wang, X. Zhang, T. Hong, High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays, Appl. Catal. B Environ., 163, 179 (2015); https://doi.org/10.1016/j.apcatb.2014.07.040.
Z. Zhuang, and et al. High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes, Adv. Funct. Mater., 26, 36 (2016); https://doi.org/10.1002/adfm.201502870.
B. Liu, and et al. Hybrid light emitters and UV solar-blind avalanche photodiodes based on iii-nitride semiconductors, Adv. Mater., 32, 1904354 (2020); https://doi.org/10.1002/adma.201904354.
Y. C. Choi, and et al., Catalytic growth of beta-Ga2O3 nanowires by arc discharge, Adv. Mater., 12 (10), https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<746::AID-ADMA746>3.0.CO;2-N.
S. Ding, L. Zhang, Y. Li, X. Xiu, Z. Xie, T. Tao, B. Liu, P. Chen, R. Zhang, Y. Zheng, A selective etching route for large-scale fabrication of β-Ga2O3 micro-/nanotube arrays, Nanomaterials, 11, 3327 (2021); https://doi.org/10.3390/nano11123327.
H. Liang, Y. Chen, X. Xia, C. Zhang, R. Shen, Y. Liu, Y. Luo, G. Du, A preliminary study of SF6 based inductively coupled plasma etching techniques for beta gallium trioxide thin film, Mater. Sci. Semicond. Proc., 39, 582 (2015); https://doi.org/10.1016/j.mssp.2015.05.065.
J. E. Hogan, S.W. Kaun, E. Ahmadi, Y. Oshima, J. S. Speck, Chlorine-based dry etching of β-Ga2O3, Semicond. Sci. Technol., 31, 065006 (2016); https://doi.org/10.1088/0268-1242/31/6/065006.
J. Yang, S. Ahn, F. Ren, S. Pearton, R. Khanna, K. Bevlin, D. Geerpuram, A. Kuramata, Inductively coupled plasma etching of bulk, single-crystal Ga2O3, J. Vac. Sci. Technol. B, 35, 031205 (2017); https://doi.org/10.1116/1.4982714.
Z. Lin, X. Xiu, S. Zhang, X. Hua, Z. Xie, R. Zhang, P. Han, Y. Zheng, Arrays of GaN nano-pillars fabricated by nickel nano-island mask, Mater. Lett., 108, 250 (2013); https://doi.org/10.1016/j.matlet.2013.07.005.
L. Zhang, X. Xiu, Y. Li, Y. Zhu, X. Hua, Z. Xie, T. Tao, B. Liu, P. Chen, R. Zhang, and et al. Solar-blind ultraviolet photodetector based on vertically aligned single-crystalline β-Ga2O3 nanowire arrays, Nanophotonics, 9, 4497 (2020); https://doi.org/10.1515/nanoph-2020-0295.
S. Wang, Y. W. Li, X. Q. Xiu, and et al. Synthesis and characterization of β-Ga2O3@GaN nanowires, Chin. Phys. B, 28, 028104 (2019); https://doi.org/10.1088/1674-1056/28/2/028104.
T. Yamada, J. Ito, R. Asahara, K. Watanabe, M. Nozaki, S. Nakazawa, Y. Anda, M. Ishida, T. Ueda, A. Yoshigoe, and et al., Comprehensive study on initial thermal oxidation of GaN (0001) surface and subsequent oxide growth in dry oxygen ambient, J. Appl. Phys., 121, 035303 (2017); https://doi.org/10.1063/1.4974458.
J. H. Choi, M. H. Ham, W. Lee, J. M. Myoung, Fabrication and characterization of GaN/amorphous Ga2O3 nanocables through thermal oxidation, Solid State Commun., 142, 437 (2007); https://doi.org/10.1016/j.ssc.2007.03.034.
L. Zhang, Y. Li, X. Xiu, G. Xin, Z. Xie, T. Tao, B. Liu, P. Chen, R. Zhang, Y. Zheng, Preparation of vertically aligned GaN@Ga2O3 core-shell heterostructured nanowire arrays and their photocatalytic activity for degradation of Rhodamine B., Superlattices Microstruct., 143, 106556 (2020); https://doi.org/10.1016/j.spmi.2020.106556.
[28] J.P. Rex and et al., The influence of deposition temperature on the structural, morphological and optical properties of micro-size structures of beta-Ga2O3, Results in Physics, 14, 102475 (2019); https://doi.org/10.1016/j.rinp.2019.102475.
W. Shunli, and et al., β-Ga2O3 nanorod arrays with high light-to-electron conversion for solar-blind deep ultraviolet photodetection, RSC Adv., 9, 6064 (2019); https://doi.org/10.1039/c8ra10371b.
M. C. Johnson, Shaul Aloni, D. E. McCready, E. D. Bourret-Courchesne, Controlled vapor-liquid-solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport, Crystal Growth & Design, 6(8), 1936 (2006); https://doi.org/10.1021/cg050524g.
B. Alhalaili, and et al. Gallium oxide nanowires for UV detection with enhanced growth and material properties, Scientific Reports, 10, 21434 (2020); https://doi.org/10.1038/s41598-020-78326-x.
M. Law, J. Goldberger, P. Yang, Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res., 34, 83 (2004); https://doi.org/10.1146/annurev.matsci.34.040203.112300.
Hao Zeng and at al. Metal-oxide nanowire molecular sensors and their promises, Chemosensors, 9(2), 41 (2021); https://doi.org/10.3390/chemosensors9020041.
Ab initio calculation. Web source: http://sites.google.com/a/kdpu.edu.ua/calculationphysics.
R. Balabai, M. Naumenko, Methodology of converting of the coordinates of the basis atoms in a unit cell of crystalline β-Ga2O3, specified in a monoclinic crystallographic system, in the laboratory cartesian coordinates for computer applications, Photoelectronics, 29, 12-20 (2020); https://doi.org/10.18524/0235-2435.2020.29.225463.
R. Balabai, V. Zdeschits, M. Naumenko, Mechanical modification of electronic properties of ul-trathin β-Ga2O3 films, Ukrainian Journal of Physics, 66(12), 1048 (2021); https://doi.org/10.15407/ujpe66.12.1048.
R. Balabai, O. Bondarenko, M. Naumenko, Energy levels of acceptor impurities in β-Ga2O3 nanostructures, Materials Today: Proceedings, 62(9), 5838-5844 (2022); https://doi.org/10.1016/j.matpr.2022.05.365.