Modeling of orthosilicate and methanesulfonic acid clusters in aqueous solution

Authors

  • A.H. Mandryka Ukrainian State University of Chemical Technology, Dnipro, Ukraine
  • O.O. Pasenko Ukrainian State University of Chemical Technology, Dnipro, Ukraine
  • V.H. Vereschak Ukrainian State University of Chemical Technology, Dnipro, Ukraine
  • Y.S. Osokin Primus Inter Pares School, Dnipro, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.4.735-741

Keywords:

orthosilicate acid, methanesulfonic acid, clusters, aqueous solution, quantum chemical modeling, binding energy, hydrogen bonding

Abstract

In the work using the quantum-chemical modeling method, the possibility of binding orthosilicate acid with different amounts of methanesulfonate anions was considered. It was demonstrated that methanesulfonic acid forms two hydrogen bonds with a molecule of orthosilicate acid, regardless of the conformation of the cluster itself. According to the results of calculations of energy parameters of systems and frontier molecular orbitals, it was established that the most stable cluster of orthosilicate acid with methanesulfonate anion is [H4SiO4 · 4CH3SO3]. It was also established that the formation of an eight-membered cycle (S–O···H–O–Si–O–H···O) and (S–O···H –O–Si–O···H–С). Furthermore, it was established that there is no significant dependence of the effective charge on the silicon atom on the number of methanesulfonate anions in the inner sphere. Thus, it is theoretically demonstrated that the methanesulfonate anion is able to stabilize orthosilicate acid and reduce the possibility of its dimerization.

References

B. Mondal, D. Ghosh, A.K. Das, Thermochemistry for silicic acid formation reaction: Prediction of new reaction pathway, Chemical Physics Letters, 478(4-6), 115 (2009); https://doi.org/10.1016/j.cplettq.2009.07.063.

S. Dwivedi, A. Kumar, S. Mishra et al., Orthosilicic acid (OSA) reduced grain arsenic accumulation and enhanced yield by modulating the level of trace element, antioxidants, and thiols in rice, Environmental Science and Pollution Research, 27(19), 24025 (2020); https://doi.org/10.1007/s11356-020-08663-x.

V.V. Potapov, A.A. Cerdan, D.S. Gorev, Silicic Acid Polymerization and SiO2 Nanoparticle Growth in Hydrothermal Solution, Polymers, 14(19), 4044 (2022); https://doi.org/10.3390/polym14194044.

A. Pielesz, J. Fabia, W. Binias et al., Graphene Oxide and Stabilized Ortho-Silicic Acid as Modifiers of Amnion and Burn Affected Skin: A Comparative Study, Nanotechnology, science and applications, 14, 49 (2021); https://doi.org/10.2147%2FNSA.S294412.

A. Mandryka, O. Pasenko, V. Vereschak, Y. Osokin, Influence of the monomer form of orthosilicic acid on the stability of polyalumosilicon coagulants and their efficiency in the treatment of drinking water, Eastern-European Journal of Enterprise Technologies, 123(10), 16 (2023); https://doi.org/10.15587/1729-4061.2023.282696.

A.G. Mandryka, O.O. Pasenko, V.H. Vereschak, Y.S. Osokin, Quantum-chemical modeling of reactions involving low-base aluminum oxychloride with orthosilicate acid, Priority areas of research in scientific and educational activities: Problems and prospects, 273 (2022); (in Ukrainian) https://elartu.tntu.edu.ua/bitstream/lib/39056/1/%D0%97%D0%B 1%D1%96%D1%80%D0%B D%D0%B8%D0%BA%202022.pdf#page=273

A.H. Mandryka, O.O. Pasenko, V.H. Vereschak, Y. S. Osokin, Modeling of complexes of low- basic aluminum oxychloride with orthosilicate acids in aqueous solution, Journal of Chemistry and Technologies, 31(1), 44 (2023); https://doi.org/10.15421/jchemtech.v31i1.271537.

M. Gernon, Environmental benefits of methanesulfonic acid. Comparative properties and advantages, Green chemistry, 1(3), 127 (1999); https://doi.org/10.1039/A900157C.

O. Pasenko, A. Mandryka, Ye. Khrupchyk, V. Vereshchak, Stable solutions of orthosilicic acid, Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 56 (2022); https://doi.org/10.32434/0321-4095- 2022-143-4-56-60.

A.G. Mandryka, O.O. Pasenko, V.H. Vereschak, Y.S. Osokin, Quantum chemical modeling of orthosilicic acid clusters with some acids in aqueous solution, Journal of Chemistry and Technologies, 30(2), 159 (2022); https://doi.org/10.15421/jchemtech.v30i2.258938.

M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., Gaussian 09, Revision D.01., Gaussian. Inc., Wallingford (2009).

F.B. Konig, J. Schonbohm, D. Bayles, AIM2000 - A program to analyze and visualize atoms in molecules, Journal of Computational Chemistry, 22(5), 545 (2001); https://doi.org/10.1002/1096-987X(20010415)22:5%3C545::AID-JCC1027%3E3.0.CO;

T.A. Keith, AIMAll, Version, 19, 12 (2017).

A.D. Becke, Density-Functional Thermochemistry. IIIThe Role of Exact Exchange, Indian Journal of Pure & Applied Physics, 98(7), 5648 (1993); https://doi.org/10.1063/1.464913.

C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a function of the electron density. Physical review B, 37(2), 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.

K.B. Wiberg, Basis set effects on calculated geometries: 6-311++G** vs. aug-cc-pVDZ, Journal of computational chemistry, 25(11), 1342 (2004); https://doi.org/10.1002/jcc.20058.

E. Demianenko, M. Ilchenko, A. Grebenyuk, V. Lobanov, A theoretical study on orthosilicic acid dissociation in water clusters, Chemical Physics Letters, 515(4-6), 274 (2011); https://doi.org/10.1016/j.cplett.2011.09.038.

T. Afshari, M. Mohsennia, Effect of the Si, Al and B doping on the sensing behavior of carbon nanotubes toward ethylene oxide: a computational study, Molecular Simulation, 45(16), 1384 (2019); https://doi.org/10.1080/08927022.2019.1635693.

V. Barone, M. Cossi, J. Tomasi, Geometry optimization of molecular structures in solution by the polarizable continuum model, Journal of Computational Chemistry, 19(4), 404 (1998); https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W.

J. Tomasi, B. Mennucci, R. Cammi, Quantum mechanical continuum solvation models, Chemical reviews, 105(8), 2999 (2005); https://doi.org/10.1021/cr9904009.

F. Weinhold, Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives, Journal of computational chemistry, 33(30), 2363 (2012); https://doi.org/10.1002/jcc.23060.

R.B. Krishnan, J.S. Binkley, R. Seeger, J.A. People, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, The Journal of Chemical Physics, 72(1), 650 (1980); https:ZZdoi.org/10.1063Z1.438955.

M.J. Frisch, J.A. Pople, J.S. Binkley, Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets, The Journal of chemical physics, 80(7), 3265 (1984); https://doi.org/10.1063/1.447079.

C.R. Wick, T. Clark, On bond-critical points in QTAIM and weak interactions, Journal of Molecular Modeling, 24(6), 1 (2018); https://doi.org/10.1007/s00894-018-3684-x

E. Espinosa, E. Molins, C. Lecomte, Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities, Chemical Physics Letters, 285(3/4), 170 (1998); https://doi.org/10.1016/S0009-2614(98)00036-0.

Published

2023-12-21

How to Cite

Mandryka, A., Pasenko, O., Vereschak, V., & Osokin, Y. (2023). Modeling of orthosilicate and methanesulfonic acid clusters in aqueous solution. Physics and Chemistry of Solid State, 24(4), 735–741. https://doi.org/10.15330/pcss.24.4.735-741

Issue

Section

Scientific articles (Chemistry)