Effect of synthesis method on the structural behavior of CaFeO2.5 compound

Authors

  • G. Rihia LEVRES Laboratory, University of El Oued, El Oued, Algeria
  • M.S. Mahboub LEVRES Laboratory, University of El Oued, El Oued, Algeria
  • S. Zeroual LEVRES Laboratory, University of El Oued, El Oued, Algeria
  • M. Mimouni LEVRES Laboratory, University of El Oued, El Oued, Algeria
  • O. Ben Ali LEVRES Laboratory, University of El Oued, El Oued, Algeria
  • H. Boulahbel Centre de Recherche Scientifique et Technique en Analyses Physico – Chimiques, Tipaza, Algeria
  • M. Ghougali LEVRES Laboratory, University of El Oued, El Oued, Algeria

DOI:

https://doi.org/10.15330/pcss.23.2.249-255

Keywords:

Crystallite size, Dislocation density, Nanoparticle, Sol-gel, X-ray powder diffraction

Abstract

CaFeO2.5 samples were synthesized by solid solution, mirror furnace and Sol-gel methods. The effect of the synthesis method on the behavior structure was investigated. Phase structures are comparatively characterized and studied by means of X-ray powder diffraction. Experimental results have revealed that the synthesis method has a strong influence on the structure of the studied compounds. All samples obtained by the three methods are crystallized in the Pnma orthorhombic system.  We obtained the best results in the case of the Sol-gel technique. In the Sol-gel method, the lattice parameters obtained are a=5.41631 Å, b= 14.73899 Å and c=5.58790 Å. Also, the value of the average crystallite size D=52.03 nm and the dislocation density δ=3.69x1010/cm². Since the values ​​of the lattice parameters in this method were the smallest of the three methods, which exhibiting a weak shrink of the volume compared to the solid solution and mirror furnace one. This shrinking is a natural result of the decrease in the value of the average crystallite size and the increase of dislocation density, with a reason for the inverse relationship between them. This allows us to conclude the importance of the Sol-gel method for obtaining CaFeO2.5 nanoscale compound.

References

H.J.M. Bouwmeester, A.J. Burggraaf, Chapter 10: Dense Ceramic Membranes for Oxygen Separation, Fundamentals of Inorganic Membrane Science and Technology, Volume 4, 1st Edition (Elsevier, in: Cot L (Eds.), Amsterdam, 1996); Hardcover ISBN: 9780444818775, eBook ISBN: 9780080534701.

C.H. Chen, H.J.M. Bouwmeester, R.H.E. Van Doorn, H. Kruidhof, A.J. Burggraaf, Solid State Ionics 98, 7 (1997); https://doi.org/10.1016/S0167-2738(97)00097-0.

Z. Zhang, Y. Chen, M.O. Tade, Y. Hao, S. Liu, Z. Shao, J Mater Chem A 2, 9666 (2014); https://doi.org/10.1039/C4TA00926F.

J.B. Goodenough, Nature 404, 821 (2000); https://doi.org/10.1038/35009177.

C. Su, W. Wang, Y. Chen, G. Yang, X. Xu, M.O. Tade, Z. Shao, ACS Appl Mater Interfaces 7, 17663 (2015); https://doi.org/10.1021/acsami.5b02810.

T. Nakanishi, Y. Masuda, K. Koumoto, Chem Mater 16, 3484 (2004); https://doi.org/10.1021/cm049423g.

J. Miao, J. Sunarso, C. Su, W. Zhou, S. Wang, Z. Shao, Sci Rep 7, 44215 (2017); https://doi.org/10.1038/srep44215.

P. Baijnath, Tiwari, S. Basu, International Journal of Hydrogen Energy 44, 10059 (2019); https://doi.org/10.1016/j.ijhydene.2019.01.164.

S. Dhankhar, P. Tiwari, K. Baskar, S. Basu, S. Singh, Current Applied Physics 17,467 (2017); https://doi.org/10.1016/j.cap.2017.01.008.

K. Gupta, S. Singh, M.S. Ramachandra Rao, Nano Energy 11, 146 (2015); https://doi.org/10.1016/j.nanoen.2014.10.016.

D.S. Vavilapalli, S. Banik, R.G. Peri, B. Muthuraaman, M. Muralidhar, M. Masato, A. Klimkowicz, K. Asokan, M.S. Ramachandra Rao, S. Shubra, Sci Rep 10, 2713 (2020); https://doi.org/10.1038/s41598-020-59454-w.

P. Berastegui, S-G. Eriksson, S. Hull, Mater Res Bull 34, 303 (1999); https://doi.org/10.1016/S0025-5408(99)00007-0.

H. Krüger, V. Kahlenberg, Acta Crystallogr B 61, 656 (2005); https://doi.org/10.1107/S0108768105026480.

A.L. Shaula, Y.V. Pivak, J.C. Waerenborgh, P. Gaczyñski, A.A. Yaremchenko, V.V. Kharton, Solid State Ionics 177, 2923 (2006); https://doi.org/10.1016/j.ssi.2006.08.030.

J. Berggren, Acta Chem Scand 25, 3616 (1971); https://doi.org/10.3891/acta.chem.scand.25-3616).

T. Takeda, Y. Yamaguchi, S. Tomiyoshi, M. Fukase, M. Sugimoto, H. Watanabe, J. Phys. Soc. Japan, 24, 446 (1968); https://doi.org/10.1143/JPSJ.24.446.

A.A. Bunaciu, E.G. Udriştioiu, H.Y. Aboul-Enein., Critical Reviews in Analytical Chemistry 45, 289 (2015); https://doi.org/10.1080/10408347.2014.949616.

G. Petzow, R. Sersale, Pure and Applied Chemistry 59, 1673 (1987); https://doi.org/10.1351/pac198759121673.

J. Szépvölgyi, I. Mohai, Engineering Ceramics’96: Higher Reliability through Processing (Kluwer Academic Publishers, in: G N Babini et al. (Eds.), Dordrecht, The Netherlands, 1997); https://doi.org/10.1007/978-94-011-5798-8011-5798-8.

F. Cambier, A. Leriche, E. Gilbart, R.J. Brook, F.L. Riley, The Physics and Chemistry of Carbides, Nitrides and Borides, (Kluwer Academic Publishers, in: R Freer (Eds.), Dordrecht, The Netherlands, 1990); https://doi.org/10.1007/978-94-009-2101-6.

J. Gubicza, J. Szépvölgyi, I. Mohai, L. Zsoldos, T. Ungàr, Materials Science and Engineering A 280, 263-269. (2000); https://doi.org/10.1016/S0921-5093(99)00702-9.

M.S. Mahboub, S. Zeroual, A. Boudjada, Mater Res Bull 47, 370 (2012); https://doi.org/10.1016/j.materresbull.2011.11.001.

S. Zeroual, M.S. Mahboub, A. Boudjada, UPB Scientific Bulletin Series B: Chemistry and Materials Science 78, 137 (2016); https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full99a_449949.pdf.

M. Saleem, L. Fang, H. B. Ruan, F. Wu, Q.L. Huang, C.L. Xu, C.Y. Kong, Intl. J. Phy. Sci. 7, 2971 (2012); https://doi.org/10.5897/IJPS12.219.

G.B. Williamson, R.C. Smallman, Phil Mag 1, 34 (1956); https://doi.org/10.1080/14786435608238074.

B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison Wesley, Massachusetts, 1978); ISBN: 0-201-01174- 3.

J. Rodriguez-Carvajal, Physica B 192, 55 (1993); https://doi.org/10.1016/0921-4526(93)90108-I.

P .Bindu, S. Thomas, J. Theor Appl Phys 8, 123 (2014); https://doi.org/10.1007/s40094-014-0141-9.

V. Biju, S. Neena, V. Vrinda, S.L. Salini, J Mater Sci 43, 1175 (2008); https://doi.org/10.1007/s10853-007-2300-8.

T.R. Jeena, A.M.E. Raj, M. Bououdina, Mater Res Express 4, 025019 (2017); https://doi.org/10.1088/2053-1591/aa5336.

A.S. Hassanien, A.A. Akl, A.H. Sáaedi, CrystEngComm 20, 1716 (2018); https://doi.org/10.1039/C7CE02173A.

B.G. Rao, D. Mukherjee, B.M. Reddy, Chapter 1: Novel approaches for preparation of nanoparticles, Nanostructures for Novel Therapy, Synthesis, Characterization and Applications, Micro and Nano Technologies (Elsevier, Amsterdam, 2017); https://doi.org/10.1016/B978-0-323-46142-9.00001-3.

Downloads

Published

2022-05-15

How to Cite

Rihia, G., Mahboub, M., Zeroual, S., Mimouni, M., Ben Ali, O., Boulahbel, H., & Ghougali, M. (2022). Effect of synthesis method on the structural behavior of CaFeO2.5 compound . Physics and Chemistry of Solid State, 23(2), 249–255. https://doi.org/10.15330/pcss.23.2.249-255

Issue

Section

Scientific articles (Chemistry)