Methods of Synthesis of Nanodispersed Iron Fluoride as the Cathode Materials for Lithium-Ion Battery
DOI:
https://doi.org/10.15330/pcss.17.2.222-233Keywords:
nanodispersed iron fluoride, nanocomposite, synthesis, dehydration, pyrohydrolysis, lithium-ion batteryAbstract
The paper deals with the analysis and classification of the modern methods of synthesis nanostructure iron fluoride and their composites with improved performance, and also the results of testing iron fluoride in lithium-ion battery. Literature data are generalized to select the most universal methods of synthesis anhydrous iron fluoride for revealing the relationship between the conditions of synthesis and structural, magnetic and morphological properties of nanosystems, and thus opens possibilities for functional materials with predetermined, adapted for use in a particular area properties.
References
[1] P.P.Fedorov, A.A.Luginina, S. V. Kuznetsov and V. V. Osiko, J. Fluorine Chem., 132, 1012 (2011).
[2] W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae and M. P. Hehlen, J. Am. Ceram. Soc. 94, 2896 (2011).
[3] S. Fujihara, K. Tokumo, J. Fluorine Chem. 130, 1106 (2009).
[4] J. Lucas, F. Smektala, J. L. Adam, J. Fluorine Chem. 114, 113 (2002).
[5] A. Sekiya, H. D. Quan, M. Tamura, R. X. Gao, J. Murata, J. Fluorine Chem.112, 145 (2001).
[6] E. Kemnitz, S. Wuttke, S. M. Coman, Eur. J. Inorg. Chem. 2011, 4773 (2011).
[7] E. Kemnitz, D.-H. Menz, Prog. Solid State Chem. 26, 97 (1998).
[8] G. N. Nehme, Wear, 278–279, 9 (2012).
[9] D. K. Chatterjee, L. S. Fong, Y. Zhang, Adv. Drug Delivery Rev. 60, 1627 (2008).
[10] G. Scholz, R. Sto ¨ßer, J. A. Momand, A. Zehl, J. Klein, Angew. Chem., Int. Ed.39, 2516 (2000).
[11] G. G. Amatucci, N. Pereira, J. Fluorine Chem. 128, 243 (2007).
[12] М. Poulain,М. Poulain,І. Lucas, Р. Brun, Mater. Res. Bull.10, 243 (1975).
[13] В. Д. Халилев, В. Л. Богданов, ЖВХО им. Д. И. Менделеева 36 (5), 593 (1991).
[14] В. Д. Федоров и др., Рос. хим. журн. им. Д. И. Менделеева, 45 (5-6), 51 (2001).
[15] F. Wang, R. Robert, N. A. Chernova et al. J. Am. Chem. Soc. 133, 18828 (2011).
[16] Y. Makimura, A. Rougier, J.M. Tarascon, Appl Surf Sci. 252, 4587 (2006).
[17] S.-W. Kim, D.H. Seo, H. Gwon, et al., Adv. Mater. 22, 5260 (2010).
[18] H. Jung, H. Song, T. Kim, et al., J. Alloys Compd. 647, 750 (2015).
[19] Z. Yang, Y. Pei, X. Wang, L. Liu, X. Su., J. Comput. Theor. Nanosci. 980, 44 (2012).
[20] Y. Kim, S. Choi, S. Kim., Int. J. Quantum Chem. 114, 340 (2014).
[21] J. Maier, Nat. Mater. 4, 805 (2005).
[22] A. S. Arico, P. G. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4, 366 (2005).
[23] P. G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008).
[24] J. Liu, W. Liu, S. Ji, Y. Wan, M. Gu, H. Yin, Y. Zhou, Chem. Eur. J., 20, 5815 (2014).
[25] Q. Chu, Z. Xing, J. Tian, X. Ren, A. M. Asiri, A. O. Al-Youbi, X. Sun, J POWER SOURCES, 236, 188 (2013).
[26] Э. Г. Раков, В. В. Тесленко, Пирогидролиз неорганичиских фторидов (Москва, Энергоатом¬издат, 1987).
[27] L. R. Batsanova, Russ. Chem. Rev. 40, 465 (1971).
[28] P. P. Fedorov, S. V. Kuznetsov, V. V. Voronov, I. V. Yarotskaya, V. V. Arbenina, Russ. J. Inorg. Chem. 53, 1681 (2008).
[29] S. V. Kuznetsov, P. P. Fedorov, V. V. Voronov, K. S. Samarina, R. P. Ermakov, V. V. Osiko, Russ. J. Inorg. Chem. 55, 484 (2010).
[30] De-long Ma, Z. Y. Cao, H. G. Wang, X. L. Huang, L. M. Wang, X. B. Zhang, Energy Environ. Sci. 5, 8538 (2012).
[31] D. G. Karraker, P. K. Smith, Inorg. Chem. 31, 1118 (1992).
[32] P. L. Crouse, J. Phys. Chem. Solids 50, 369 (1989).
[33] S.-T. Myung, S. Sakurada, H. Yashiro, Y.-K. Sun, Journal of Power Sources 223, 1 (2013).
[34] Kerstin M. Forsberg, Ake C. Rasmuson, Journal of Crystal Growth 296, 213 (2006).
[35] Kerstin M. Forsberg, Ake C.Rasmuson, Journal of Crystal Growth 312, 2351 (2010).
[36] Kerstin M. Forsberg, Ake C. Rasmuson, Journal of Crystal Growth 312, 2358 (2010).
[37] Y. Makimura, A. Rougier, L. Laffont, M. Womes, J.-C. Jumas, J.-B. Leriche, J.-M. Tarascon, Electrochemistry Communications 8, 1769 (2006).
[38] Y. Makimura, A. Rougier, J.-M. Tarascon, Applied Surface Science 252, 4587 (2006).
[39] C. Li, J. Lin, J. Mater. Chem. 20, 6831 (2010).
[40] L. Liu, M. Zhou, X. Wang, Z. Yang, F. Tian, X. Wang, J Mater Sci. 47, 1819 (2012).
[41] T. Li, L. Li, Y. L. Cao, X. P. Ai, H. X. Yang, J. Phys. Chem. C. 114, 3190 (2010).
[42] L. Li, Y. Yu, F. Meng, Y. Tan, R. J. Hamers, S. Jin, Nano Lett. 12, 724 (2012).
[43] B. Li, Z. Cheng, N. Zhanga, K. Suna, Nano Energy 4, 7 (2014).
[44] J. Tan, L. Liu, H. Hu, Z. Yang, H. Guo, Q. Wei, X. Yi, Z. Yan, Q. Zhou, Z. Huang, H. Shu, X. Yang, X. Wang, Journal of Power Sources 251, 75 (2014).
[45] L. Li, F. Meng, S. Jin, Nano Lett. 12, 6030 (2012).
[46] Y. Guo, A. Lippitz, P. Saftien, Wolf gang E. S. Ungerb, E. Kemnitz, Dalton Trans., 44, 5076 (2015).
[47] L. Di Carlo, Donato E. Conte, E. Kemnitz, N. Pinna, Chem. Commun. 50, 460 (2014).
[48] P. T. Patil, A. Dimitrov, J. Radnik, E. Kemnitz, J. Mater. Chem. 18, 1632 (2008).
[49] E. Kemnitz, U. Groß, S. Rüdiger, C. S. Shekar, Angewandte Chemie International Edition 42, 4251 (2003).
[50] Y. Guo, S. Wuttke, A. Vimont, M. Daturi, J.-C. Lavalley, K. Teinz, E. Kemnitz, ChemCatChem, 5, 2223 (2013).
[51] J. L. Galvez, J. Dufour, C. Negro, F. Lopez-Mateos, Journal of Hazardous Materials 154, 135 (2008).
[52] T. Bao, H. Zhong, H. Zheng, H. Zhan, Y. Zhou, Materials Letters 158, (2015) 21.
[53] N. Louvain, A. Fakhry, P. Bonnet, Ma. El-Ghozzi, K. Gueґrin, M.-T. Sougrati, J.-C. Jumas, P. Willmann, CrystEngComm, 15, 3664 (2013).
[54] C. Li, L. Gu, S. Tsukimoto, P. A. van Aken, J. Maier, Adv. Mater. 22, 3650 (2010).
[55] L. Liu, H. Guo, M. Zhou, Q. Wei, Z. Yang, H. Shu, X. Yang, J. Tan, Z. Yan, X. Wang, Journal of Power Sources. 238, 501 (2013).
[56] F. Badway, N. Pereira, F. Cosandey, G. G. Amatucci, Journal of The Electrochemical Society, 150(9), A1209 (2003).
[57] F. Badway, F. Cosandey, N. Pereira, G. G. Amatucci, J. Electrochem. Soc. 150(10), A1318 (2003).
[58] X. Xu, S. Chen, M. Shui, L. Xu, W. Zheng, J. Shu, L. Cheng, L. Feng, Y. Ren, Ceramics International. 400, 3145 (2014).
[59] Y. Shen, X. Wang, H. Hu, M. Jiang, X. Yang, H. Shu, Journal of Power Sources 283, 204 (2015).
[60] J. Liu, Y. Wan, W. Liu, Z. Ma, S. Ji, J. Wang, Y. Zhou, P. Hodgsonb, Y. Li, J. Mater. Chem. A. 1, 1969 (2013).
[61] R. Ma, Z. Lu, C. Wang, Hong-En Wang, S. Yang, L. Xia Jonathan C. Y. Chung, Nanoscale. 5, 6338 (2013).
[62] De-long Ma, H. Wang, Y. Li, D. Xu, S. Yuan, X. Huang, X. Zhang, Y. Zhang, Nano Energy. 10, 295 (2014).
[63] L. Liu, M. Zhou, L.h. Yi, H.P. Guo, J.L. Tan, H.B. Shu, X.K. Yang, Z.H. Yang, X.Y. Wang, J. Mater. Chem. 22, 17 (2012).
[64] Z. H. Yang, Y. Pei, X. Y. Wang, L. Liu and X. Su, Comput. Theor. Chem., 2012, 980, 44–48
[65] Y. G. Wang, H. Q. Li and Y. Y. Xia, Adv. Mater. 18, 2619 (2006).
[66] J. Cho, H. Kim and B. Park, J. Electrochem. Soc. 151, A1707 (2004).
[67] W. Wu, Y. Wang, X. Y. Wang, Q. Q. Chen, X. Wang and S. Y. Yang, J. Alloys Compd. 486, 93 (2009).
[68] W. Wu, X. Y. Wang, X. Wang, S. Y. Yang, X. M. Liu, Q. Q. Chen, Mater. Lett. 63, 1788 (2009).
[2] W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae and M. P. Hehlen, J. Am. Ceram. Soc. 94, 2896 (2011).
[3] S. Fujihara, K. Tokumo, J. Fluorine Chem. 130, 1106 (2009).
[4] J. Lucas, F. Smektala, J. L. Adam, J. Fluorine Chem. 114, 113 (2002).
[5] A. Sekiya, H. D. Quan, M. Tamura, R. X. Gao, J. Murata, J. Fluorine Chem.112, 145 (2001).
[6] E. Kemnitz, S. Wuttke, S. M. Coman, Eur. J. Inorg. Chem. 2011, 4773 (2011).
[7] E. Kemnitz, D.-H. Menz, Prog. Solid State Chem. 26, 97 (1998).
[8] G. N. Nehme, Wear, 278–279, 9 (2012).
[9] D. K. Chatterjee, L. S. Fong, Y. Zhang, Adv. Drug Delivery Rev. 60, 1627 (2008).
[10] G. Scholz, R. Sto ¨ßer, J. A. Momand, A. Zehl, J. Klein, Angew. Chem., Int. Ed.39, 2516 (2000).
[11] G. G. Amatucci, N. Pereira, J. Fluorine Chem. 128, 243 (2007).
[12] М. Poulain,М. Poulain,І. Lucas, Р. Brun, Mater. Res. Bull.10, 243 (1975).
[13] В. Д. Халилев, В. Л. Богданов, ЖВХО им. Д. И. Менделеева 36 (5), 593 (1991).
[14] В. Д. Федоров и др., Рос. хим. журн. им. Д. И. Менделеева, 45 (5-6), 51 (2001).
[15] F. Wang, R. Robert, N. A. Chernova et al. J. Am. Chem. Soc. 133, 18828 (2011).
[16] Y. Makimura, A. Rougier, J.M. Tarascon, Appl Surf Sci. 252, 4587 (2006).
[17] S.-W. Kim, D.H. Seo, H. Gwon, et al., Adv. Mater. 22, 5260 (2010).
[18] H. Jung, H. Song, T. Kim, et al., J. Alloys Compd. 647, 750 (2015).
[19] Z. Yang, Y. Pei, X. Wang, L. Liu, X. Su., J. Comput. Theor. Nanosci. 980, 44 (2012).
[20] Y. Kim, S. Choi, S. Kim., Int. J. Quantum Chem. 114, 340 (2014).
[21] J. Maier, Nat. Mater. 4, 805 (2005).
[22] A. S. Arico, P. G. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4, 366 (2005).
[23] P. G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008).
[24] J. Liu, W. Liu, S. Ji, Y. Wan, M. Gu, H. Yin, Y. Zhou, Chem. Eur. J., 20, 5815 (2014).
[25] Q. Chu, Z. Xing, J. Tian, X. Ren, A. M. Asiri, A. O. Al-Youbi, X. Sun, J POWER SOURCES, 236, 188 (2013).
[26] Э. Г. Раков, В. В. Тесленко, Пирогидролиз неорганичиских фторидов (Москва, Энергоатом¬издат, 1987).
[27] L. R. Batsanova, Russ. Chem. Rev. 40, 465 (1971).
[28] P. P. Fedorov, S. V. Kuznetsov, V. V. Voronov, I. V. Yarotskaya, V. V. Arbenina, Russ. J. Inorg. Chem. 53, 1681 (2008).
[29] S. V. Kuznetsov, P. P. Fedorov, V. V. Voronov, K. S. Samarina, R. P. Ermakov, V. V. Osiko, Russ. J. Inorg. Chem. 55, 484 (2010).
[30] De-long Ma, Z. Y. Cao, H. G. Wang, X. L. Huang, L. M. Wang, X. B. Zhang, Energy Environ. Sci. 5, 8538 (2012).
[31] D. G. Karraker, P. K. Smith, Inorg. Chem. 31, 1118 (1992).
[32] P. L. Crouse, J. Phys. Chem. Solids 50, 369 (1989).
[33] S.-T. Myung, S. Sakurada, H. Yashiro, Y.-K. Sun, Journal of Power Sources 223, 1 (2013).
[34] Kerstin M. Forsberg, Ake C. Rasmuson, Journal of Crystal Growth 296, 213 (2006).
[35] Kerstin M. Forsberg, Ake C.Rasmuson, Journal of Crystal Growth 312, 2351 (2010).
[36] Kerstin M. Forsberg, Ake C. Rasmuson, Journal of Crystal Growth 312, 2358 (2010).
[37] Y. Makimura, A. Rougier, L. Laffont, M. Womes, J.-C. Jumas, J.-B. Leriche, J.-M. Tarascon, Electrochemistry Communications 8, 1769 (2006).
[38] Y. Makimura, A. Rougier, J.-M. Tarascon, Applied Surface Science 252, 4587 (2006).
[39] C. Li, J. Lin, J. Mater. Chem. 20, 6831 (2010).
[40] L. Liu, M. Zhou, X. Wang, Z. Yang, F. Tian, X. Wang, J Mater Sci. 47, 1819 (2012).
[41] T. Li, L. Li, Y. L. Cao, X. P. Ai, H. X. Yang, J. Phys. Chem. C. 114, 3190 (2010).
[42] L. Li, Y. Yu, F. Meng, Y. Tan, R. J. Hamers, S. Jin, Nano Lett. 12, 724 (2012).
[43] B. Li, Z. Cheng, N. Zhanga, K. Suna, Nano Energy 4, 7 (2014).
[44] J. Tan, L. Liu, H. Hu, Z. Yang, H. Guo, Q. Wei, X. Yi, Z. Yan, Q. Zhou, Z. Huang, H. Shu, X. Yang, X. Wang, Journal of Power Sources 251, 75 (2014).
[45] L. Li, F. Meng, S. Jin, Nano Lett. 12, 6030 (2012).
[46] Y. Guo, A. Lippitz, P. Saftien, Wolf gang E. S. Ungerb, E. Kemnitz, Dalton Trans., 44, 5076 (2015).
[47] L. Di Carlo, Donato E. Conte, E. Kemnitz, N. Pinna, Chem. Commun. 50, 460 (2014).
[48] P. T. Patil, A. Dimitrov, J. Radnik, E. Kemnitz, J. Mater. Chem. 18, 1632 (2008).
[49] E. Kemnitz, U. Groß, S. Rüdiger, C. S. Shekar, Angewandte Chemie International Edition 42, 4251 (2003).
[50] Y. Guo, S. Wuttke, A. Vimont, M. Daturi, J.-C. Lavalley, K. Teinz, E. Kemnitz, ChemCatChem, 5, 2223 (2013).
[51] J. L. Galvez, J. Dufour, C. Negro, F. Lopez-Mateos, Journal of Hazardous Materials 154, 135 (2008).
[52] T. Bao, H. Zhong, H. Zheng, H. Zhan, Y. Zhou, Materials Letters 158, (2015) 21.
[53] N. Louvain, A. Fakhry, P. Bonnet, Ma. El-Ghozzi, K. Gueґrin, M.-T. Sougrati, J.-C. Jumas, P. Willmann, CrystEngComm, 15, 3664 (2013).
[54] C. Li, L. Gu, S. Tsukimoto, P. A. van Aken, J. Maier, Adv. Mater. 22, 3650 (2010).
[55] L. Liu, H. Guo, M. Zhou, Q. Wei, Z. Yang, H. Shu, X. Yang, J. Tan, Z. Yan, X. Wang, Journal of Power Sources. 238, 501 (2013).
[56] F. Badway, N. Pereira, F. Cosandey, G. G. Amatucci, Journal of The Electrochemical Society, 150(9), A1209 (2003).
[57] F. Badway, F. Cosandey, N. Pereira, G. G. Amatucci, J. Electrochem. Soc. 150(10), A1318 (2003).
[58] X. Xu, S. Chen, M. Shui, L. Xu, W. Zheng, J. Shu, L. Cheng, L. Feng, Y. Ren, Ceramics International. 400, 3145 (2014).
[59] Y. Shen, X. Wang, H. Hu, M. Jiang, X. Yang, H. Shu, Journal of Power Sources 283, 204 (2015).
[60] J. Liu, Y. Wan, W. Liu, Z. Ma, S. Ji, J. Wang, Y. Zhou, P. Hodgsonb, Y. Li, J. Mater. Chem. A. 1, 1969 (2013).
[61] R. Ma, Z. Lu, C. Wang, Hong-En Wang, S. Yang, L. Xia Jonathan C. Y. Chung, Nanoscale. 5, 6338 (2013).
[62] De-long Ma, H. Wang, Y. Li, D. Xu, S. Yuan, X. Huang, X. Zhang, Y. Zhang, Nano Energy. 10, 295 (2014).
[63] L. Liu, M. Zhou, L.h. Yi, H.P. Guo, J.L. Tan, H.B. Shu, X.K. Yang, Z.H. Yang, X.Y. Wang, J. Mater. Chem. 22, 17 (2012).
[64] Z. H. Yang, Y. Pei, X. Y. Wang, L. Liu and X. Su, Comput. Theor. Chem., 2012, 980, 44–48
[65] Y. G. Wang, H. Q. Li and Y. Y. Xia, Adv. Mater. 18, 2619 (2006).
[66] J. Cho, H. Kim and B. Park, J. Electrochem. Soc. 151, A1707 (2004).
[67] W. Wu, Y. Wang, X. Y. Wang, Q. Q. Chen, X. Wang and S. Y. Yang, J. Alloys Compd. 486, 93 (2009).
[68] W. Wu, X. Y. Wang, X. Wang, S. Y. Yang, X. M. Liu, Q. Q. Chen, Mater. Lett. 63, 1788 (2009).
Downloads
Published
2016-06-15
How to Cite
Moklyak, V. V., & Zbihley, L. Z. (2016). Methods of Synthesis of Nanodispersed Iron Fluoride as the Cathode Materials for Lithium-Ion Battery. Physics and Chemistry of Solid State, 17(2), 222–233. https://doi.org/10.15330/pcss.17.2.222-233
Issue
Section
Scientific articles