Morphology of PbTe Crystal Surface Sputtered by Argon Plasma under Secondary Neutral Mass Spectrometry Conditions
DOI:
https://doi.org/10.15330/pcss.17.3.336-341Keywords:
SNMS, PbTe, Morphology, Sputtering, Re-deposition, NucleationAbstract
We have investigated morphology of the lateral surfaces of PbTe crystal samples grown from melt by the Bridgman method sputtered by Ar+ plasma with ion energy of 50 – 550 eV for 5 - 50 minutes under Secondary Neutral Mass Spectrometry (SNMS) conditions. The sputtered PbTe crystal surface was found to be simultaneously both the source of sputtered material and the efficient substrate for re-deposition of the sputtered material during the depth profiling. During sputtering PbTe crystal surface is forming the dimple relief. To be re-deposited the sputtered Pb and Te form arrays of the microscopic surface structures in the shapes of hillocks, pyramids, cones and others on the PbTe crystal sputtered surface. Correlation between the density of re-deposited microscopic surface structures, their shape, and average size, on the one hand, and the energy and duration of sputtering, on the other, is revealed.
References
[2] H. Oechsner, Nuclear Instruments and Methods in Physics Research B 33, 918 (1988).
[3] I.V. Veryovkin, W.F. Calaway, J.F. Moore, M.J. Pellin, J.W. Lewellen, Y. Li, S.V. Milton, B.V. King, M. Petravic, Applied Surface Science 231-232, 962 (2004).
[4] T. Albers, M. Neumann, D. Lipinsky, A. Benninghoven, Applies Surface Science 70-71, 49 (1993).
[5] T.A. Dang, T.A. Frist, Surface and Coatings Technology 106, 60 (1998).
[6] G.L. Katona, Z. Berényi, L. Péter, K. Vad, Vacuum 82(2), 270 (2007).
[7] T. Schneider, M. Sommer, J. Goschnick, Applied Surface Science 252(1), 257 (2005).
[8] Vasile-Dan Hodoroaba, Wolfgang E.S Unger, Holger Jenett, Volker Hoffmann, Birgit Hagenhoff, Sven Kayser, Klaus Wetzig, Applied Surface Science 179(1-4), 30 (2001).
[9] D.M. Zayachuk, O.S. Ilyina, A.V. Pashuk, V.I. Mikityuk, V.V. Shlemkevych, A. Csik, and D. Kaczorowski, J. Cryst Growth 376, 28 (2013).
[10] P. Sigmund, Elements of Sputtering Theory, In: Nanofabrication by Ion-Beam Sputtering. T. Som, D. Kanjilal (Pan Stanford Publishing, 2013).
[11] M. Kopnarski, H. Jennet, Electron Impact (EI) Secondary Neutral Mass Spectrometry (SNMS). In: Friedbacher, Bubert H., editors. Surface and Thin Film Analysis. A Compendium of Principles, Instrumentation, and Applications ґ(Wiley-VCH Verlag GmbH & Co.KGaA, 2011).
[12] D.M. Zayachuk, E.I. Slynko, V.E. Slynko, and A. Csik, Materials Letters 173, 167 (2016).
[13] P. Sarobol, J.E. Blendell, C.A. Handwerker, Acta Materialia 61/6 (2013) 1991-2003
[14] Qintao Li, Zhichun Ni, Shumin Yang, Jinlong Gong, Dezhang Zhu, Zhiyuan Zhu, Nuclear Instruments and Methods B 266, 197 (2008).
[15] L.B. Begrambekov, A.M. Zakharov, V.G. Telkovsky, Nuclear Instruments and Methods B 115(1-4), 456 (1996).
[16] F. Okuyama, J. Kato, Surface Science 338(1-3), )L857 (1995).
[17] Z.W. Kowalski, Vacuum 63(4),603 (2001).
[18] H. Maier, J. Hesse: in Crystals, Growth, Properties and Applications, v. 4 (Springer, Berlin, Heidelberg, New York, 1980).
[19] G. Nimtz, B. Schlicht (Eds.), Narrow-Gap Semiconductors: Narrow Gap Lead Salts (Springer, Berlin, 1985).