Interpolational $(L,M)$-rational integral fraction on a continual set of nodes

Authors

  • Ya.O. Baranetskij Lviv Polytechnic National University, 12 Bandera str., 79013, Lviv, Ukraine
  • I.I. Demkiv Lviv Polytechnic National University, 12 Bandera str., 79013, Lviv, Ukraine
  • M.I. Kopach Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
  • A.V. Solomko Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine https://orcid.org/0000-0002-6213-4130
https://doi.org/10.15330/cmp.13.3.587-591

Keywords:

interpolation, functional polynomial, continual set of nodes, chain fraction, rational fraction
Published online: 2021-11-19

Abstract

In the paper, an integral rational interpolant on a continual set of nodes, which is the ratio of a functional polynomial of degree $L$ to a functional polynomial of degree $M$, is constructed and investigated. The resulting interpolant is one that preserves any rational functional of the resulting form.

Article metrics
How to Cite
(1)
Baranetskij, Y.; Demkiv, I.; Kopach, M.; Solomko, A. Interpolational $(L,M)$-Rational Integral Fraction on a Continual Set of Nodes. Carpathian Math. Publ. 2021, 13, 587-591.

Most read articles by the same author(s)

1 2 > >>