Weighted Hardy operators in local generalized Orlicz-Morrey spaces

Authors

  • C. Aykol Department of Mathematics, Ankara University, Ankara, Turkey
  • Z.O. Azizova Azerbaijan State Oil and Industry University, Baku, Azerbaijan
  • J.J. Hasanov Azerbaijan State Oil and Industry University, Baku, Azerbaijan
https://doi.org/10.15330/cmp.13.2.522-533

Keywords:

weighted Hardy operator, local generalized Orlicz-Morrey space, local $BMO$ space
Published online: 2021-11-06

Abstract

In this paper, we find sufficient conditions on general Young functions $(\Phi, \Psi)$ and the functions $(\varphi_1,\varphi_2)$ ensuring that the weighted Hardy operators $A_\omega^\alpha$ and ${\mathcal A}_\omega^\alpha$ are of strong type from a local generalized Orlicz-Morrey space $M^{0,\,loc}_{\Phi,\,\varphi_1}(\mathbb R^n)$ into another local generalized Orlicz-Morrey space $M^{0,\,loc}_{\Psi,\,\varphi_2}(\mathbb R^n)$. We also obtain the boundedness of the commutators of $A_\omega^\alpha$ and ${\mathcal A}_\omega^\alpha$ from $M^{0,\,loc}_{\Phi,\,\varphi_1}(\mathbb R^n)$ to $M^{0,\,loc}_{\Psi,\,\varphi_2}(\mathbb R^n)$.

Article metrics
How to Cite
(1)
Aykol, C.; Azizova, Z.; Hasanov, J. Weighted Hardy Operators in Local Generalized Orlicz-Morrey Spaces. Carpathian Math. Publ. 2021, 13, 522-533.