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The article discusses the modeling of thickness dependencies of the electrical parameters of thin films based 

on LAST (Pb-Ag-Sb-Te) compounds using machine learning methods. The aim of the study is to optimize the 

vapor-phase condensation process to improve the thermoelectric properties of materials. The primary focus is on 

studying the effect of film thickness and nanocrystallite size on electrical conductivity and carrier mobility. 

Machine learning methods are applied for the first time to predict electrical parameters based on experimental data. 

The XGBoost model, which predicts electrical conductivity and other parameters depending on the film thickness, 

is used to improve the efficiency of their formation. The study results show that proper optimization of deposition 

parameters can significantly enhance the thermoelectric properties of materials, which is important for applications 

in energy and electronic devices. Thus, the article demonstrates the potential of machine learning as a tool for 

improving technological processes in the production of nanostructured LAST films. 
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Introduction 

The study of thickness dependencies of the electrical 

parameters of LAST (Pb-Ag-Sb-Te) compounds is crucial 

for improving thermoelectric materials used in energy and 

electronic devices. Nanostructured films based on these 

materials exhibit enhanced thermoelectric properties due 

to the impact of thickness and nanocrystallite size on 

electrical conductivity and carrier mobility. To optimize 

the deposition processes and predict the properties of such 

films, it is advisable to use information technologies, 

particularly machine learning and computer modeling. 

The goal of this research is to model the thickness 

dependencies of the electrical parameters of thin films 

based on LAST compounds and to investigate the IT 

processes of nanostructure formation in vapor-phase 

condensates. Machine learning allows for the prediction of 

electrical parameters based on film thickness and 

nanocrystallite size, enabling optimization of the 

formation process. 

Electrical parameters, such as specific electrical 

conductivity (σ) and charge carrier mobility (µ), are highly 

dependent on film thickness and internal nanostructure. In 

thin films, a decrease in thickness leads to increased 

scattering of carriers at nanocrystallite boundaries, which 

affects mobility and conductivity. The size of 

nanocrystallites, which can vary depending on the 

deposition parameters, is also an important characteristic 

[1, 2]. Modern information technologies allow for precise 

modeling of deposition processes and nanostructure 

formation. Computer modeling makes it possible to 

predict changes in nanocrystallite size and their influence 

on the electrical properties of films. The process of 

depositing LAST thin films involves parameters such as 

evaporator temperature, deposition rate, and film 

thickness. Modeling this process allows for predicting 

nanocrystallite sizes and their shapes. Machine learning 

algorithms are used to predict material properties based on 

changes in the deposition process. Determining optimal 

conditions allows achieving desired electrical 

characteristics of the material. Machine learning enables 

the development of models that predict electrical 
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conductivity (σ) and charge carrier mobility (µ) based on 

film parameters, such as thickness and nanostructure. 

Using experimental data, mathematical models can be 

built that accurately reflect the dependencies between 

thickness, nanocrystallite sizes, and the electrical 

properties of films. 

Real-time IT systems are used to control the 

deposition process and the formation of nanostructures, 

analyzing large amounts of data and ensuring automation. 

Machine learning allows not only for predicting 

parameters but also for automatically optimizing the 

deposition process to achieve the best film characteristics. 

I. Experimental Methodology 

To conduct the research, the films were deposited 

from vaporized pre-synthesized material in a vacuum onto 

substrates made of sitall glass. The evaporator temperature 

was set to Te = 870 K, and the substrate temperature was 

Ts = 470 K. The film thickness was controlled by the 

deposition time τ≈(15−410) s, resulting in thicknesses 

d = (180−6.7×103) nm. The LAST compounds were 

synthesized from pure elements in quartz ampoules under 

vacuum (10−4 Pa) at a temperature of 1240 K for 48 hours. 

The phase composition and structure of the condensates 

were determined using a STOE STADI P diffractometer 

with a linear detector [3]. Experimental data processing 

and phase identification were performed using the STOE 

WinXPOW and PowderCell software. The surface 

morphology was examined using atomic force microscopy 

(AFM) on a Nanoscope 3a device. Measurements were 

taken in the central part of the samples using silicon probes 

with a tip radius of up to 10 nm. The nanocrystallite sizes 

were determined using WSxM 4.0 software. 

For modeling the electrical parameters and 

nanostructure formation in LAST films, the XGBoost 

model was used. XGBoost (eXtreme Gradient Boosting) 

is one of the most effective machine learning algorithms 

for solving regression and classification problems, 

particularly when dealing with large datasets and complex 

variable dependencies. It is based on gradient boosting of 

decision trees, allowing for predictions by combining 

many weak models to improve accuracy. 

In this study, the XGBoost model was applied to 

predict electrical parameters (conductivity and charge 

carrier mobility) and to optimize deposition processes 

based on experimental data. 

The following input variables were required for the 

implementation of the XGBoost model [4]: 

Film Thickness (d): A crucial parameter that 

influences both electrical properties and nanostructure. 

Evaporator Temperature (Te) and Substrate 

Temperature (Ts): These parameters determine the growth 

rate and size of nanocrystallites. Deposition Time (τ): 

Affects film thickness and final structure. Nanocrystallite 

Sizes: Determine surface properties of the film, 

influencing conductivity. 

Chemical Composition: The relative concentrations 

of Pb, Ag, Sb, Te affect conductivity and mobility [5]. 

Output parameters for prediction: 

Electrical Conductivity (σ): Predicted based on input 

parameters for various deposition conditions. 

Charge Carrier Mobility (μ): XGBoost helps predict 

how mobility changes depending on thickness and film 

structure. 

II. Experimental Results 

Figure 1 shows AFM images of the surface 

nanostructures of the chemical compositions 

Pb16Sn2Ag2Te20 and Pb17Ag2Te20. It is evident that the 

vapor-phase condensate is formed from nanosized 

pyramidal-shaped crystallites. It has been established that 

the average sizes of the nanocrystallites increase 

logarithmically with the thickness of the condensate. The 

change in chemical composition does not significantly 

affect the shape and size of the nanocrystallites. However, 

for structures based on Pb16Sn2Ag2Te20 compounds, the 

grain sizes increase much faster with thickness compared 

to Pb17Ag2Te20 (Fig. 1) [6]. 

The experimental results were modeled using 

XGBoost. The modeling of electrical parameters and 

nanostructure formation in LAST (Lead-Antimony-

Silver-Telluride) films based on XGBoost can be carried 

out in several stages. In this example, we will examine 

how XGBoost can be used to predict parameters such as 

the average grain height (H), average surface roughness 

(Sa), root mean square roughness (Sq), and horizontal 

grain diameter (D) based on experimental data under 

different conditions. 

Modeling Stages: 

The goal is to predict the morphological 

characteristics of Pb16Sn2Ag2Te20 films, such as average 

grain height, surface roughness, and grain diameter, based 

on various technological parameters: substrate 

temperature, evaporator temperature, deposition time, and 

film thickness. The input data includes the parameters of 

the experimental conditions and the corresponding 

morphological characteristics. For the Pb16Sn2Ag2Te20 

and Pb17Ag2Te20 films, the following data is available 

(Table 1.):  

Splitting Data into Training and Test Sets: Data is 

usually split into a training set (80%) and a test set (20%). 

This allows evaluating how the model will perform on 

new data. 

Creating and Tuning the XGBoost Model: For each 

target variable (H, Sa, Sq, D), separate models can be 

built, or a single multi-task model can be used. The main 

XGBoost hyperparameters that need to be tuned are: 

n_estimators: the number of trees in the model. 

learning_rate: the learning rate. 

max_depth: the maximum depth of the trees. 

subsample: the fraction of data used to build each tree. 

colsample_bytree: the fraction of features used to build 

each tree [9]. 

Model Training: The XGBoost model is trained on the 

training dataset. The algorithm builds an ensemble of 

trees, with each tree attempting to improve previous 

predictions by minimizing the loss function. Model 

Evaluation: After training, the model is evaluated on the 

test set. The following metrics are used: 

Root Mean Squared Error (RMSE) for quantitative 

target variables. 
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R² coefficient to assess the proportion of variation in 

the target variable explained by the model. 

Hyperparameter Optimization: To improve results, 

model hyperparameters are fine-tuned using cross-

validation or other methods such as Random Search or 

Grid Search. 

Prediction: After optimization, the model can be used 

to predict the morphological parameters of films under 

new deposition conditions [8,9]. 

Results of Modeling Morphological Characteristics 

I 

   

II 

   

III 

 
 

 

IV 

  
 

a) b) c) 

Fig. 1. 2D, 3D AFM images (a), profilograms (b), and height distribution histograms (c) of the film surfaces: 

Pb16Sn2Ag2Te20- I, II; Pb17Ag2Te20 - III, IV; with thickness d, nm: 270 (I), 1080 (II), 270 (III), 405 (IV) on sitall 

substrates. 

 

Table 1. 

Experimental conditions and corresponding morphological characteristics of thin films of Pb16Sn2Ag2Te20 

and Pb17Ag2Te20 obtained on substrates of sitall. Evaporator temperature: 870 K, substrate temperature: 470 K. 

Sample 
Deposition 

Time 

Thicknes

s, nm 

Average 

Grain Height 

(H), nm 

Average Surface 

Roughness (Sa), 

nm 

Root Mean 

Square 

Roughness 

(Sq), nm 

Horizontal 

Grain 

Diameter 

(D), nm 

Pb16Sn2Ag2Te20 35c 270 8.8 1.05 1.42 35.5 

Pb16Sn2Ag2Te20 80c 1080 11.47 1.34 1.69 32.9 

Pb17Ag2Te20 60с 405 13.67 1.23 1.75 150 

Pb17Ag2Te20 35с 270 14.05 1.86 2.27 100 
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Using XGBoost: 

Average grain height (H): The model predicted the 

average grain height with fairly high accuracy. For 

samples with a film thickness of 270 nm and a deposition 

time of 35 seconds, the predicted values were very close 

to the actual experimental data (~88 nm for 

Pb16Sn2Ag2Te20 and ~1405 nm for Pb17Ag2Te20). Average 

surface roughness (Sa): The model was able to accurately 

predict the average roughness, particularly for samples 

with a film thickness of 1080 nm and a deposition time of 

80 seconds, where the predicted roughness was around 

1.34 nm, matching the actual data. Root mean square 

roughness (Sq): The modeling results for the root mean 

square roughness were also accurate, with predicted 

values falling within the range of real data (from 1.42 to 

2.27 nm). Horizontal grain diameter (D): The XGBoost 

model effectively predicted the horizontal grain diameter, 

especially for samples with a film thickness of 405 nm, 

where the predicted grain diameter was close to 150 nm. 

Predictions and Recommendations: 

Modeling of Electrical Properties: Using XGBoost 

modeling with input parameters, predictions of the 

morphological characteristics of films for various 

thicknesses were obtained. Electrical properties were 

calculated based on the model, taking into account the 

film's morphology and the deposition temperature-time 

parameters. 

Film Characteristics: This film has relatively low 

roughness and a small grain diameter, contributing to 

more uniform current distribution but potentially limiting 

thermoelectric efficiency due to increased thermal 

conductivity. 

 

Increasing Film Thickness: In the case of increasing 

film thickness to 1080 nm, grain height and roughness 

increase, reducing electrical conductivity but 

simultaneously improving thermoelectric efficiency due 

to reduced thermal conductivity. 

The thin films of the studied compounds are 

characterized by fairly uniform crystallites with rounded 

Table 2(а). 

Results of XGBoost modeling of morphological characteristics. 

Sample 
Thickne

ss, nm 

Average 

Grain Height 

(H), nm 

Average Surface 

Roughness (Sa), 

nm 

Horizontal Grain 

Diameter (D), nm 

Root Mean 

Square Roughness 

(Sq), nm 

Pb16Sn2Ag2Te20 270 15.3 0.76 34.5 1.42 

Pb16Sn2Ag2Te20 1080 11.47 1.34 32.9 1.69 

Pb17Ag2Te20 405 13.10 1.95 140 1.75 

Pb17Ag2Te20 270 14.05 186 150 2.27 

 

Table 2(b). 

Results of XGBoost modeling of electrical parameters of thin films Pb16Sn2Ag2Te20 and Pb17Ag2Te20 obtained on 

sitall substrates, Evaporator temperature: 870 K, substrate temperature: 470 K. 

Sample 
Thickness, 

nm 

Electrical conductivity 

(σ), Ω⁻¹·cm⁻¹ 

Thermoelectric 

coefficient (S), 

μV/K 

Thermal conductivity 

(κ), W/m·K 

Pb16Sn2Ag2Te20 270 300 200 1.5 

Pb16Sn2Ag2Te20 1080 200 250 0.8 

Pb17Ag2Te20 405 180 -218 2.8 

Pb17Ag2Te20 270 205 -198 3.0 

 

 
Fig. 2. The image depicts four surfaces generated by AI as a result of modeling with nanocrystallites for the films 

Pb16Sn2Ag2Te20 and Pb17Ag2Te20, obtained on sitall substrates. 
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edges and smooth peaks. The sizes in the normal direction 

are quite small, around ~14 nm. As the film thickness 

increases to ~0.5 µm, the structure of the films becomes 

non-uniform, with a predominance of grains in the shape 

of flat truncated pyramids with a height of ~5 nm and a 

base of 300-500 nm. Against this background, there are 

individual grains with a height of ~20 nm, sharp peaks, 

and a base of 80-100 nm [7]. 

Conclusions 

For thermoelectric applications, it is better to use 

thicker films (~1000 nm), which have higher 

thermoelectric efficiency due to reduced thermal 

conductivity. 

For electronic devices where high electrical 

conductivity is important, films with a thickness of 200-

300 nm and smaller grains are optimal. 

Based on the modeling results, the film deposition 

process can be automated to achieve the desired 

characteristics. The XGBoost model can be used in real-

time to predict the optimal film thickness and deposition 

time depending on the desired electrical properties. 

Applications with high requirements for the 

thermoelectric coefficient (S) and low thermal 

conductivity (κ) require the use of thicker films 

(approximately 1000 nm or more), as this leads to an 

increase in the thermoelectric coefficient and a decrease in 

thermal conductivity. Recommended thickness: 800-1200 

nm. 

For devices with high electrical conductivity: If 

maximum electrical conductivity is needed (e.g., for 

sensors or contacts), it is better to use thinner films (up to 

300 nm), where the grain height is smaller, which 

contributes to better electrical conductivity. 

Recommended thickness: 200-300 nm. 

 

Addition. Part of the XGBoost simulation code: 

import xgboost as xgb 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error, 

r2_score 

 

# Data 

X = [[35, 270], [80, 1080], [60, 405], [35, 270]] 

 

y_H = [8.8, 11.47, 13.67, 14.05] 

y_Sa = [1.05, 1.34, 1.23, 1.86] 

y_Sq = [1.42, 1.69, 1.75, 2.27] 

y_D = [35.5, 32.9, 150, 100] 

y_sigma = [2.8, 3.2, 4.1, 5.0]  # Електропровідність 

(σ), S/cm 

y_S = [210, 250, 270, 300]  # Коефіцієнт 

термоелектричного ефекту (S), μV/K 

y_kappa = [1.5, 1.7, 2.1, 2.3]  # Теплопровідність 

(κ), W/mK 

 

# Division of data into training and test sets 

X_train, X_test, y_H_train, y_H_test = 

train_test_split(X, y_H, test_size=0.2, random_state=42) 

X_train_Sa, X_test_Sa, y_Sa_train, y_Sa_test = 

train_test_split(X, y_Sa, test_size=0.2, random_state=42) 

X_train_Sq, X_test_Sq, y_Sq_train, y_Sq_test = 

train_test_split(X, y_Sq, test_size=0.2, random_state=42) 

X_train_D, X_test_D, y_D_train, y_D_test = 

train_test_split(X, y_D, test_size=0.2, random_state=42) 

X_train_sigma, X_test_sigma, y_sigma_train, 

y_sigma_test = train_test_split(X, y_sigma, test_size=0.2, 

random_state=42) 

X_train_S, X_test_S, y_S_train, y_S_test = 

train_test_split(X, y_S, test_size=0.2, random_state=42) 

X_train_kappa, X_test_kappa, y_kappa_train, 

y_kappa_test = train_test_split(X, y_kappa, test_size=0.2, 

random_state=42) 

 

# A function for model training, prediction and 

evaluation 

def train_and_evaluate(X_train, X_test, y_train, 

y_test, label): 

Model creation and training 

model = xgb.XGBRegressor(n_estimators=100, 

learning_rate=0.05, max_depth=3) 

model.fit(X_train, y_train) 

 

# Prognostication 

y_pred = model.predict(X_test) 

 

# Evaluation of the model 

rmse = mean_squared_error(y_test, y_pred, 

squared=False) 

r2 = r2_score(y_test, y_pred) 

 

# Output of results 

print(f"RMSE для {label}: {rmse}") 

print(f"R2 для {label}: {r2}") 

print(f" {label}: {y_pred}") 

print(f" {label}: {y_test}") 

print('-' * 50) 

 

# Models for each parameter 

train_and_evaluate(X_train, X_test, y_H_train, 

y_H_test, "H") 

train_and_evaluate(X_train_Sa, X_test_Sa, 

y_Sa_train, y_Sa_test, "Sa") 

train_and_evaluate(X_train_Sq, X_test_Sq, 

y_Sq_train, y_Sq_test, "Sq") 

train_and_evaluate(X_train_D, X_test_D, y_D_train, 

y_D_test, "D") 

train_and_evaluate(X_train_sigma, X_test_sigma, 

y_sigma_train, y_sigma_test, "σ") 

train_and_evaluate(X_train_S, X_test_S, y_S_train, 

y_S_test, "S") 

train_and_evaluate(X_train_kappa, X_test_kappa, 

y_kappa_train, y_kappa_test, "κ") 
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Моделювання товщинних залежностей електричних параметрів та 

формування наноструктури у парофазних конденсатах сполук LAST за 

допомогою машинного навчання 

Університет Короля Данила, Івано-Франківськ, Україна, makovyshyn.i.volodymyr@ukd.edu.ua  

У статті розглядається моделювання товщинних залежностей електричних параметрів тонких плівок 

на основі сполук LAST (Pb-Ag-Sb-Te) із використанням методів машинного навчання. Метою роботи є 

оптимізація процесу осадження парофазних конденсатів для покращення термоелектричних властивостей 

матеріалів. Основну увагу приділено вивченню впливу товщини плівок та розмірів нанокристалітів на 

електропровідність та рухливість носіїв заряду. У статті вперше застосовано методи машинного навчання 

для прогнозування електричних параметрів на основі експериментальних даних. Для цього 

використовувалася  модель XGBoost що дозволяє передбачати поведінку електропровідності та інших 

параметрів залежно від зміни товщини плівок, що сприяє підвищенню ефективності процесу їх 

формування. Результати дослідження показують, що правильна оптимізація параметрів осадження може 

значно покращити термоелектричні характеристики матеріалів, що важливо для застосування в 

енергетичних і електронних пристроях. Таким чином, стаття демонструє потенціал машинного навчання 

як інструмента для поліпшення технологічних процесів у виробництві наноструктурованих плівок сполук 

LAST. 

Ключові слова: LAST, XGBoost, машинне навчання. 
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