[1] Samson S.L., Garber A.J. Metabolic syndrome. Endocrinology and metabolism clinics of North America, 43 (1) (2014), 1–23. doi: 10.1016/j.ecl.2013.09.009
[2] Bayliak M. Metabolic syndrome, obesity, and Drosophila. Journal of Vasyl Stefanyk Precarpathian National University, 7 (4) (2020), 7–18. doi: 10.15330/jpnu.7.4.7-18
[3] Zhu L., Yang W.J., Spence C.B., Bhimla A., Ma G.X. Lean yet unhealthy: Asian American adults had higher risks for metabolic syndrome than Non-Hispanic White adults with the same body mass index: evidence from NHANES 2011-2016. Healthcare, 9 (11) (2021), 1518. doi:10.3390/healthcare9111518
[4] Bruce K.D., Hanson M.A. The developmental origins, mechanisms, and implications of metabolic syndrome. The Journal of nutrition, 140 (3) (2010), 648–652. doi: 10.3945/jn.109.111179
[5] Bussler S., Penke M., Flemming G., Elhassan Y.S., Kratzsch J., Sergeyev E., Lipek T., Vogel M., Spielau U., Körner A., de Giorgis T., Kiess W. Novel insights in the metabolic syndrome in childhood and adolescence. Hormone research in paediatrics, 88 (3-4) (2017), 181–193. doi: 10.1159/000479510
[6] Saklayen M.G. The global epidemic of the metabolic syndrome. Current hypertension reports, 20 (2) (2018), 12. doi: 10.1007/s11906-018-0812-z
[7] Santos-Marcos J. A., Perez-Jimenez F., Camargo A. The role of diet and intestinal microbiota in the development of metabolic syndrome. The Journal of nutritional biochemistry, 70 (2019), 1–27. doi: 10.1016/j.jnutbio.2019.03.017
[8] McCracken E., Monaghan M., Sreenivasan S. Pathophysiology of the metabolic syndrome. Clinics in dermatology, 36 (1) (2018), 14–20.
[9] Rochlani Y., Pothineni N.V., Kovelamudi S., Mehta J. L. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Therapeutic advances in cardiovascular disease, 11 (8) (2017), 215-225. doi: 10.1177/1753944717711379
[10] Eckel R.H., Alberti K.G., Grundy S.M., Zimmet P.Z. The metabolic syndrome. The lancet, 375 (9710) (2010), 181-183. doi: 10.1016/S0140-6736(09)61794-3
[11] Cornier M.A., Dabelea D., Hernandez T.L., Lindstrom R.C., Steig A.J., Stob N.R., Van Pelt R.E., Wang H., Eckel R.H. The metabolic syndrome. Endocrine reviews, 29 (7) (2008), 777-822. doi: 10.1210/er.2008-0024
[12] Monteiro R., Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators of inflammation, (2010), 289645. doi: 10.1155/2010/289645
[13] Bayliak M.M., Abrat O.B. Role of Nrf2 in oxidative and inflammatory processes in obesity and metabolic diseases. In: Deng H. (Ed.) Nrf2 and its Modulation in Inflammation. Progress in Inflammation Research, vol. 85. Springer, Cham, 2020. doi: 10.1007/978-3-030-44599-7_7
[14] Esser N., Legrand-Poels S., Piette J., Scheen A.J., Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes research and clinical practice, 105 (2) (2014), 141-150. doi: 10.1016/j.diabres.2014.04.006
[15] Coelho M., Oliveira T., Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Archives of medical science: AMS, 9 (2) (2013), 191–200. doi: 10.5114/aoms.2013.33181
[16] Ntzouvani A., Fragopoulou E., Panagiotakos D., Pitsavos C., Antonopoulou S. Reduced circulating adiponectin levels are associated with the metabolic syndrome independently of obesity, lipid indices and serum insulin levels: a cross-sectional study. Lipids in health and disease, 15 (1) (2016), 140. doi: 10.1186/s12944-016-0311-7
[17] Emanuela F., Grazia M., Marco D.R., Maria Paola L., Giorgio F., Marco B. Inflammation as a link between obesity and metabolic syndrome. Journal of nutrition and metabolism, (2012), 476380. doi: 10.1155/2012/476380
[18] Belhayara M.I., Mellouk Z., Hamdaoui M.S., Bachaoui M., Kheroua O., Malaisse W.J. Relationship between the insulin resistance and circulating predictive biochemical markers in metabolic syndrome among young adults in western Algeria. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13 (1) (2019), 504-509. doi:10.1016/j.dsx.2018.11.019
[19] Kamso S. Body mass index, total cholesterol, and ratio total to HDL cholesterol were determinants of metabolic syndrome in the Indonesian elderly. Medical Journal of Indonesia, 16 (3) (2007), 195-200. doi: 10.13181/mji.v16i3.276
[20] Skalicky J., Muzakova V., Kandar R., Meloun M., Rousar T., Palicka V. Evaluation of oxidative stress and inflammation in obese adults with metabolic syndrome. Clinical Chemistry and Laboratory Medicine, 46 (4) (2008), 499-505. doi: 10.1515/CCLM.2008.096
[21] Singh R.G., Yoon H.D., Wu L.M., Lu J., Plank L.D., Petrov M.S. Ectopic fat accumulation in the pancreas and its clinical relevance: a systematic review, meta-analysis, and meta-regression. Metabolism, 69 (2017), 1-13. doi: 10.1016/j.metabol.2016.12.012
[22] Aggoun Y. Obesity, metabolic syndrome, and cardiovascular disease. Pediatric research, 61 (6) 2007, 653-659. doi: 10.1203/pdr.0b013e31805d8a8c
[23] de Abreu V.G., Martins C.J.M., de Oliveira P.A.C., Francischetti E.A. High-molecular weight adiponectin/HOMA-IR ratio as a biomarker of metabolic syndrome in urban multiethnic Brazilian subjects. PLoS One, 12 (7) (2017), e0180947. doi: 10.1371/journal.pone.0180947
[24] Zaha D.C., Vesa C., Uivarosan D., Bratu O., Fratila O., Tit D.M., Pantis C., Diaconu C.C., Bungau S. Influence of inflammation and adipocyte biochemical markers on the components of metabolic syndrome. Experimental and therapeutic medicine, 20 (1) (2020), 121-128. doi: 10.3892/etm.2020.8663
[25] Tune J.D., Goodwill A.G., Sassoon D.J., Mather K.J. Cardiovascular consequences of metabolic syndrome. Translational research: the journal of laboratory and clinical medicine, 183 (2017), 57–70. doi: 10.1016/j.trsl.2017.01.001
[26] Siitonen N., Pulkkinen L., Lindström J., Kolehmainen M., Eriksson J.G., Venojärvi M., Ilanne-Parikka P., Keinänen-Kiukaanniemi S., Tuomilehto J., Uusitupa M. Association of ADIPOQ gene variants with body weight, type 2 diabetes and serum adiponectin concentrations: the Finnish Diabetes Prevention Study. BMC medical genetics, 12 (2011), 5. doi: 10.1186/1471-2350-12-5
[27] Sanjari M., Khodashahi M., Gholamhoseinian A., Shokoohi M. Association of adiponectin and metabolic syndrome in women. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 16 (12) (2011), 1532–1540.
[28] Yun J.E., Kimm H., Jo J., Jee S.H. Serum leptin is associated with metabolic syndrome in obese and nonobese Korean populations. Metabolism, 59 (3) (2010), 424–429. doi: 10.1016/j.metabol.2009.08.012
[29] López-Jaramillo P., Gómez-Arbeláez D., López-López J., López-López C., Martínez-Ortega J., Gómez-Rodríguez A., Triana-Cubillos S. The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Hormone molecular biology and clinical investigation, 18 (1) (2014), 37–45. doi: 10.1515/hmbci-2013-0053
[30] Achari A.E., Jain S.K. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. International journal of molecular sciences, 18 (6) (2017), 1321. doi: 10.3390/ijms18061321
[31] Frühbeck G., Catalán V., Rodríguez A., Ramírez B., Becerril S., Salvador J., Portincasa P., Colina I., Gómez-Ambrosi J. Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Scientific reports, 7 (1) (2017), 6619. doi: 10.1038/s41598-017-06997-0
[32] Zlibut A., Agoston-Coldea L., Mocan T., Bocsan I.C., Mocan L. Biomarkers in metabolic syndrome. In: Zaman Z.S. (Ed.) Ultimate Guide Insulin, IntechOpen, 2019. doi: 10.5772/intechopen.79427
[33] Ukkola O. (2009). Ghrelin and metabolic disorders. Current protein and peptide science, 10 (1) (2009), 2–7. doi: 10.2174/138920309787315220
[34] McLaughlin T., Abbasi F., Lamendola C., Frayo R.S., Cummings D.E. Plasma ghrelin concentrations are decreased in insulin-resistant obese adults relative to equally obese insulin-sensitive controls. The Journal of clinical endocrinology and metabolism, 89 (4) (2004), 1630–1635. doi: 10.1210/jc.2003-031572
[35] Yudkin J.S., Juhan-Vague I., Hawe E., Humphries S.E., di Minno G., Margaglione M., Tremoli E., Kooistra T., Morange P.E., Lundman P., Mohamed-Ali V., Hamsten A., HIFMECH Study Group. Low-grade inflammation may play a role in the etiology of the metabolic syndrome in patients with coronary heart disease: the HIFMECH study. Metabolism: clinical and experimental, 53 (7) (2004), 852–857. doi: 10.1016/j.metabol.2004.02.004
[36] Devaraj S., Singh U., Jialal I. Human C-reactive protein and the metabolic syndrome. Current opinion in lipidology, 20 (3) (2009), 182–189. doi: 10.1097/MOL.0b013e32832ac03e
[37] Yoon K., Ryu S., Lee J., Park J.D. Higher and increased concentration of hs-CRP within normal range can predict the incidence of metabolic syndrome in healthy men. Diabetes & Metabolic Syndrome, 12 (6) (2018), 977–983. doi: 10.1016/j.dsx.2018.06.008
[38] Szalai A.J., McCrory M.A., Xing D., Hage F.G., Miller A., Oparil S., Chen Y.F., Mazzone M., Early R., Henry S.P., Zanardi T.A., Graham M.J., Crooke R.M. Inhibiting C-reactive protein for the treatment of cardiovascular disease: promising evidence from rodent models. Mediators of inflammation, 2014 (2014), 353614. doi: 10.1155/2014/353614
[39] Moon Y.S., Kim D.H., Song D.K. Serum tumor necrosis factor-α levels and components of the metabolic syndrome in obese adolescents. Metabolism, 53 (7) (2004), 863–867. doi: 10.1016/j.metabol.2004.02.007
[40] Walsh J.M., McGowan C.A., Byrne J.A., Rath A., McAuliffe F.M. The association between TNF-α and insulin resistance in euglycemic women. Cytokine, 64 (1) (2013), 208-212. doi: 10.1016/j.cyto.2013.07.001
[41] Sethi J.K., Hotamisligil G.S. Metabolic messengers: tumor necrosis factor. Nature metabolism, 3 (10) (2021), 1302–1312. doi: 10.1038/s42255-021-00470-z
[42] Qu D., Liu J., Lau C.W., Huang Y. IL-6 in diabetes and cardiovascular complications. British journal of pharmacology, 171 (15) (2014), 3595–3603. doi: 10.1111/bph.12713
[43] Mohammadi M., Gozashti M.H., Aghadavood M., Mehdizadeh M.R., Hayatbakhsh M.M. Clinical significance of serum IL-6 and TNF-α levels in patients with metabolic syndrome. Reports of biochemistry & molecular biology, 6 (1) (2017), 74–79.
[44] Kardas F., Akın L., Kurtoglu S., Kendirci M., Kardas Z. Plasma Pentraxin 3 as a biomarker of metabolic syndrome. Indian journal of pediatrics, 82 (1) (2015), 35–38. doi: 10.1007/s12098-014-1542-0
[45] Spahis S., Borys J.M., Levy E. Metabolic syndrome as a multifaceted risk factor for oxidative stress. Antioxidants & Redox Signaling, 26 (9) (2017), 445–461. doi: 10.1089/ars.2016.6756
[46] Vona R., Gambardella L., Cittadini C., Straface E., Pietraforte D. (2019). Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxidative medicine and cellular longevity, (2019), 8267234. doi: 10.1155/2019/8267234
[47] Matsuzawa-Nagata N., Takamura T., Ando H., Nakamura S., Kurita S., Misu H., Ota T., Yokoyama M., Honda M., Miyamoto K., Kaneko S. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism, 57 (8) (2008), 1071–1077. doi: 10.1016/j.metabol.2008.03.010
[48] Matsuda M., Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obesity research & clinical practice, 7 (5) (2013), e330–341. doi: 10.1016/j.orcp.2013.05.004
[49] Bayliak M.M., Abrat O.B., Storey J.M., Storey K.B., Lushchak V.I. Interplay between diet-induced obesity and oxidative stress: comparison between Drosophila and mammals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 228 (2019), 18–28. doi: 10.1016/j.cbpa.2018.09.027
[50] Alcalá M., Calderon-Dominguez M., Bustos E., Ramos P., Casals N., Serra D., Viana M., Herrero L. Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice. Scientific reports, 7 (1) (2017), 16082. doi: 10.1038/s41598-017-16463-6
[51] Brown L.A., Kerr C.J., Whiting P., Finer N., McEneny J., Ashton T. Oxidant stress in healthy normal-weight, overweight, and obese individuals. Obesity (Silver Spring), 17 (3) (2009), 460–466. doi: 10.1038/oby.2008.590
[52] Chrysohoou C., Panagiotakos D.B., Pitsavos C., Skoumas I., Papademetriou L., Economou M., Stefanadis C. The implication of obesity on total antioxidant capacity in apparently healthy men and women: the ATTICA study. Nutrition, metabolism, and cardiovascular diseases: NMCD, 17 (8) (2007), 590–597. doi: 10.1016/j.numecd.2006.05.007
[53] Tinahones F.J., Murri-Pierri M., Garrido-Sánchez L., García-Almeida J.M., García-Serrano S., García-Arnés J., García-Fuentes E. Oxidative stress in severely obese persons is greater in those with insulin resistance. Obesity (Silver Spring), 17 (2) (2009), 240–246. doi: 10.1038/oby.2008.536
[54] Mackness M. I., Arrol S., Abbott C., Durrington P. N. (1993). Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis, 104 (1-2) (1993), 129–135. doi: 10.1016/0021-9150(93)90183-u
[55] Staňková B., Vávrová L., Rychlíková J., Žák A. Changes in paraoxonase 1 activity and concentration of conjugated dienes in connection with number of metabolic syndrome components. Klinická biochemie a metabolismus, 24 (45) (2016), 88–93.
[56] Sentí M., Tomás M., Fitó M., Weinbrenner T., Covas M.I., Sala J., Masiá R., Marrugat J. Antioxidant paraoxonase 1 activity in the metabolic syndrome. The Journal of clinical endocrinology and metabolism, 88 (11) (2003), 5422–5426. doi: 10.1210/jc.2003-030648
[57] Jing F., Mao Y., Guo J., Zhang Z., Li Y., Ye Z., Ding, Y., Wang J., Jin M., Chen, K. The value of apolipoprotein B/apolipoprotein A1 ratio for metabolic syndrome diagnosis in a Chinese population: a cross-sectional study. Lipids in health and disease, 13 (2014), 81. doi: 10.1186/1476-511X-13-81
[58] Fu B.C., Hullar M.A.J., Randolph T.W., Franke A.A., Monroe K.R., Cheng I., Wilkens L.R., Shepherd J.A., Madeleine M.M., Le Marchand L., Lim U., Lampe J.W. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study. The American journal of clinical nutrition, 111 (6) (2020), 1226–1234. doi: 10.1093/ajcn/nqaa015
[59] Yang J.J., Shu X.O., Herrington D.M., Moore S.C., Meyer K.A., Ose J., Menni C., Palmer N.D., Eliassen H., Harada S., Tzoulaki I., Zhu H., Albanes D., Wang T.J., Zheng W., Cai H., Ulrich C.M., Guasch-Ferré M., Karaman I., Fornage M., Cai Q., Matthews C.E., Wagenknecht L.E., Elliott P., Gerszten R.E., Yu D. Circulating trimethylamine N-oxide in association with diet and cardiometabolic biomarkers: an international pooled analysis. The American journal of clinical nutrition, 113 (5) (2021), 1145–1156. doi: 10.1093/ajcn/nqaa430
[60] Andraos S., Jones B., Lange K., Clifford S.A., Thorstensen E.B., Kerr J.A., Wake M., Saffery R., Burgner D.P., O'Sullivan J.M. Trimethylamine N-oxide (TMAO) is not associated with cardiometabolic phenotypes and inflammatory markers in children and adults. Current developments in nutrition, 5 (1) (2021), nzaa179. doi: 10.1093/cdn/nzaa179
[61] Kornilov S.A., Lucas I., Jade K., Dai C.L., Lovejoy J.C., Magis A.T. Plasma levels of soluble ACE2are associated with sex, metabolic syndrome, and its biomarkers in a large cohort, pointing to a possible mechanism for increased severity in COVID-19. Critical care, 24 (1) (2020), 452. doi: 10.1186/s13054-020-03141-9
[62] Tans R., Bande R., van Rooij A., Molloy B.J., Stienstra R., Tack C.J., Wevers R.A., Wessels H.J.C.T., Gloerich J., van Gool A.J. Evaluation of cyclooxygenase oxylipins as potential biomarker for obesity-associated adipose tissue inflammation and type 2 diabetes using targeted multiple reaction monitoring mass spectrometry. Prostaglandins, Leukotrienes and Essential Fatty Acids, 160 (2020), 102157. doi: 10.1016/j.plefa.2020.102157
[63] Sroka-Oleksiak A., Młodzińska A., Bulanda M., Salamon D., Major P., Stanek M., Gosiewski T. Metagenomic analysis of duodenal microbiota reveals a potential biomarker of dysbiosis in the course of obesity and type 2 diabetes: a pilot study. Journal of clinical medicine, 9 (2) (2020), 369. doi: 10.3390/jcm9020369