On the structure of some minimax-antifinitary modules
Keywords:
minimax module; cocentralizer; module over group ring; minimax-antifinitary $RG$-module; generalized radical group
Published online:
2015-07-03
Abstract
Let $R$ be a ring and $G$ a group. An $R$-module $A$ is said to be minimax, if $A$ includes a noetherian submodule $B$ such that $A/B$ is artinian. The author study a $\mathbb{Z}_{p^\infty}G$-module $A$ such that $A/C_A(H)$ is minimax as a $\mathbb{Z}_{p^\infty}$-module for every proper not finitely generated subgroup $H$.
How to Cite
(1)
Chupordia, V. On the Structure of Some Minimax-Antifinitary Modules. Carpathian Math. Publ. 2015, 7, 120-132.