doi:10.15330/cmp.17.1.5-13

Extension property for equi-Lebesgue families of functions

Karlova O.1,2

Let *X* be a topological space and (Y, d) be a complete separable metric space. For a family $\mathcal F$ of functions from *X* to *Y* we say that $\mathcal F$ is equi-Lebesgue if for every $\varepsilon > 0$ there is a cover (F_n) of *X* consisting of closed sets such that diam $f(F_n) \leq \varepsilon$ for all $n \in \mathbb{N}$ and $f \in \mathcal{F}$.

We prove that if *X* is a perfectly normal space, *Y* is a complete separable metric space and $E \subseteq X$ is an arbitrary set, then every equi-continuous family $\mathscr{F}\subseteq Y^E$ can be extended to an equi-Lebesgue family $\mathscr{G} \subseteq Y^X$.

Key words and phrases: extension of Borel 1 function, equi-Baire 1 family of functions, equi-Lebesgue family of functions, 1-separated set, metrizable space, topological space.

1 Introduction

Recall that a function $f : X \to Y$ between topological spaces *X* and *Y* is

- (i) *Baire 1*, if *f* is a pointwise limit of a sequence of continuous functions $f_n : X \to Y$;
- (ii) *Borel* 1 or F_{σ} *-measurable*, if for each open set $V \subseteq Y$ the preimage $f^{-1}(V)$ is F_{σ} in X.

We will denote by $B_1(X, Y)$ and $\mathcal{B}_1(X, Y)$ the collections of all Baire 1 and Borel 1 functions, respectively.

It is well-known that for a perfectly normal (in particular, metric) topological space *X* and for a metric space *Y* every Baire 1 function is F_{σ} -measurable; moreover, for *Y* = **R** these two notions are equivalent [10]. But $\mathcal{B}_1(X, Y) \nsubseteq B_1(X, Y)$ even for metric complete separable spaces *X* and *Y* as the following simple example shows: $\chi_{\{0\}} \in \mathcal{B}_1(\mathbb{R}, \mathbb{R}) \setminus B_1(\mathbb{R}, \mathbb{R})$.

Many authors use the term *Baire 1* for functions between topological spaces in the sense of *Fσ*-measurable function. We prefer to use notion *Borel 1* instead of *Baire 1* in such cases and throughout the paper we will cite results of other authors using this terminology.

In 2001, P.Y. Lee, W.-K. Tang and D. Zhao [13] obtained the following *ε*-*δ* characterization of Borel 1 functions.

Author want to thanks professor Piotr Szuca for his hints about applications of the orbit function for family of equi-Lebesgue maps.

¹ Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubynskyi str., 58012, Chernivtsi, Ukraine

² Jan Kochanowski University of Kielce, 5 Żeromskiego str., 25369, Kielce, Poland

E-mail: o.karlova@chnu.edu.ua

УДК 515.1, 517.51

²⁰²⁰ *Mathematics Subject Classification:* Primary 54C20, 26A21; Secondary 54C30, 54C50.

Theorem 1. Let (X, d_X) be a separable metric space and (Y, d_Y) be a complete separable metric space. A function $f: X \to Y$ is Borel 1 if and only if for each $\varepsilon > 0$ there exists a function *δ f* $\mathcal{L}_{\varepsilon}^{f}: X \to (0, +\infty)$ such that for all $x, x' \in X$ we have

$$
d_X(x,x') < \min\left\{\delta_\varepsilon^f(x),\delta_\varepsilon^f(x')\right\} \implies d_Y(f(x),f(x')) \leq \varepsilon. \tag{1}
$$

Motivated by this characterization, D. Lecomte [12] introduced the notion of equi-Baire 1 family of functions, which was rediscovered later by A. Alikhani-Koopaei [1]. Namely, a family $\mathscr F$ of functions from *X* to *Y* is said to be *equi-Baire* 1 if for each $\varepsilon > 0$ there exists a function δ_{ε} : *X* \rightarrow (0, $+\infty$) such that for all $f \in \mathcal{F}$ and $x, x' \in X$ condition (1) holds.

D. Lecomte [12, Proposition 32] obtained the following characterization of equi-Baire 1 families.

Theorem 2. Let (X, d_X) be a separable metric space and (Y, d_Y) be a complete separable metric space. For a family $\mathcal F$ of functions from *X* to *Y* the following conditions are equivalent:

- (i) $\mathcal F$ is equi-Baire 1;
- (ii) for every $\varepsilon > 0$ there is a cover (F_n) of *X* consisting of closed sets such that

diam $f(F_n) \leq \varepsilon$

for all $n \in \mathbb{N}$ and $f \in \mathcal{F}$;

- (iii) there is a finer metrizable separable topology on *X* making $\mathscr F$ equi-continuous;
- (iv) for every nonempty closed subset *F* of *X* there is ^a point *x* such that the family

$$
\left\{f|_{F}:f\in\mathscr{F}\right\}
$$

is equi-continuous at *x*.

Properties of equi-Baire 1 families of functions and its applications for dynamic systems were studied recently in [1–4].

In [3], the authors introduced *equi-Lebesgue families* of functions as families with property (ii) from Theorem 2. One of the main results of [3] deals with an extension property of equi-Lebesgue families.

Theorem 3 ([3, Theorem 6.1]). Let (X, d_X) be a separable metric space and (Y, d_Y) be a separable complete metric space. Let $H \subset X$ be a nonempty G_{δ} -set and $\mathscr F$ be an equi-continuous family of functions from *H* to (Y, d_Y) . Then all functions in $\mathcal F$ can be extended to an equi-Baire ¹ family of functions from *X* to *Y*.

The aim of this note is a generalization of Theorem 3. Namely, we prove the following fact.

Theorem 4. Let *X* be a perfectly normal space, *Y* be a Polish space and $E \subseteq X$ be an arbitrary set. Then every equi-continuous family $\mathscr{F} \subseteq Y^E$ can be extended to equi-Lebesgue family $\mathscr{G} \subseteq Y^X$.

The paper is organized as follows. In Section 2, using standard arguments, we show that every equi-continuous family $\mathscr{F} \subseteq Y^H$ can be extended to an equi-continuous family $\mathscr{G} \subseteq Y^E$ for some G_δ -set $E\supseteq H$ in $X.$ Later we consider 1-separated sets in Section 3 and prove that in a perfectly normal space every hereditarily Baire subset is 1-separated from any disjoint G_δ -set. This gives a possibility to extend Borel functions from hereditarily Baire subsets of perfectly normal spaces. We prove this in Section 4. Finally, Section 5 contains the proof of the main extension theorem of the paper.

2 Extension of equi-continuous family to a G_δ -set

Let *X* be a topological space and (Y, d) be a metric space. For a function $f : X \to Y$ we consider the following property:

(LP) for every $\varepsilon > 0$ there is a sequence (F_n) of closed sets in *X* such that $X = \bigcup_{n=1}^{\infty} F_n$ and diam $f(F_n) < \varepsilon$ for every $n \in \mathbb{N}$.

In case $X = Y = \mathbb{R}$, H. Lebesgue proved [11] that the above mentioned condition is equivalent to the inclusion $f \in \mathcal{B}_1(X, Y)$. In [3], this property of a function is called *Lebesgue property*.

In is known (see [10, §31.II, Theorem 3]), that every function with *(LP)* is Borel 1, and if *Y* is separable, then the inverse implication is true. It was shown in [3], that the condition of separability on *Y* is essential.

If a function *f* between metric spaces *X* and *Y* satisfies condition (1), then we will say, following [3], that *f has LTZ-property*.

Let us recall that if a single-function family $\mathcal{F} = \{f\}$ has property *(iv)* of Theorem 2, then we say that *f* has the *point of continuity property* or, briefly, *(PCP)*. Similarly, a family \mathcal{F} having (iv) is called *a family with the point of equi-continuity property* or *(PECP)* for short.

Let *X* be a topological space and (Y, d) be a bounded metric space. For a family $\mathscr{F} \subseteq Y^X$ of functions we denote by

$$
f_{\mathscr{F}}^{\sharp}(x) = (f(x))_{f \in \mathscr{F}}
$$

the *orbit function* $f_{\mathscr{F}}^{\sharp}:X\to Y^{T}$ *,* where $T=|\mathscr{F}|.$ Assume that $Z=Y^{T}$ is equipped with the supremum metric

$$
\varrho(z_1, z_2) = \sup_{t \in T} d(z_1(t), z_2(t)).
$$

Then it is easy to see that the following observation is valid.

Proposition 1. Let *X* be ^a topological space and (*Y*, *d*) be ^a bounded metric space. Then

- (1) $\mathscr F$ is equi-continuous at $x\in X$ if and only if $f^\sharp_\mathscr F:X\to(Z,\varrho)$ is continuous at $x;$
- (2) $\mathscr F$ is equi-Lebesgue if and only if $f_{\mathscr F}^\sharp : X \to (Z,\varrho)$ has Lebesgue property;
- (3) $\mathscr F$ has *(PECP)* if and only if $f_{\mathscr F}^{\sharp}: X \to (Z, \varrho)$ has *(PCP)*;

(4) if *X* is metric, then $\mathscr F$ is equi-Baire 1 if and only if $f_{\mathscr F}^\sharp:X\to (Z,\varrho)$ has LTZ-property;

 $\bf{Definition 1.}$ Let $A\subseteq X.$ We say that a family $\mathscr{G}\subseteq Y^X$ is an extension of a family $\mathscr{F}\subseteq Y^A$ if for every $f \in \mathcal{F}$ there is $g \in \mathcal{G}$ such that $g|_A = f$.

Let us recall that a topological space is *perfect*, if every its closed subset is *G^δ* .

Proposition 2. Let *X* be ^a perfect topological space, (*Y*, *d*) be ^a complete bounded metric space, $H \subseteq X$ be an arbitrary set and $\mathscr{F} \subseteq Y^H$ be an equi-continuous family of functions. Then $\mathscr F$ can be extended to an equi-continuous family $\mathscr G \subseteq Y^E$ onto a G_δ -set $E \supseteq H$.

Proof. Let $\mathscr{F} \subseteq Y^H$ be an equi-continuous family of functions $\mathscr{F} = \{f_t : t \in T\}$. Then $f_{\mathscr{F}}^{\sharp}: H \to (Z, \varrho)$ is continuous on *H*. Since the space (Z, ϱ) is complete, it follows from [5, 4.3.16] that there exists a continuous extension $g: E \to (Z, \varrho)$ of $f_{\mathscr{F}}^{\sharp}$, where $E = \omega_g^{-1}(0)$. Let $g(x) = (g_t(x))_{t \in T}$ for each $x \in E$. Then family $\mathscr{G} = \{g_t : t \in T\}$ is an equi-continuous extension of $\mathcal F$ by Proposition 1. Note that the oscillation function $\omega_g : E \to \mathbb R$ is upper semicontinuous, consequently, *E* is closed in *X*. Moreover, *E* is a *G^δ* -subset of a perfect space *X*.

3 1-separated sets in a perfectly normal paracompact space

In this section, we deal with a notion of 1-separated subsets which plays crucial role in extension of Borel 1 functions.

Definition 2. Subsets *A* and *B* in ^a topological space *X* are called *1-separated*, if there exists an F_{σ} - and G_{δ} -set $H \subseteq X$ such that

$$
A\subseteq H\subseteq X\setminus B.
$$

In this case, we say that *H separates A and B.*

Remark 1. Let *X* be ^a perfectly normal space.

- Definition ² is equivalent to the definition of 1-separated sets from [8].
- If *A* and *B* are disjoint *G*_δ-subsets of *X*, then they are 1-separated [10, §30, Theorem 2].

Definition 3. Let us recall that a set $A \neq \emptyset$ in a topological space X is reducible (in the sense of *Hausdorff), if for every closed set* $F \neq \emptyset$ we have

$$
\overline{F \cap A} \cap \overline{F \setminus A} \neq F.
$$

Recall that a topological space is *hereditarily Baire*, if every its closed subset is a Baire space.

Clearly, each open or closed set is reducible. Notice that every reducible subset of a perfectly normal paracompact space is F_{σ} and G_{δ} simultaneously (see [7, Theorem 1]). Moreover, if *X* is hereditarily Baire, the inverse is true [7, Proposition 3.1].

Definition 4. Let $\mathscr{D} = \{D_{\xi} : \xi \in [0, \alpha]\}$ be an ordinal-indexed family of closed subsets of a topological space *X*. Family $\mathscr D$ is said to be regular closed in *X*, if

- (a) $D_0 = X \supset D_1 \supset \cdots \supset D_\alpha = \emptyset;$
- (b) $D_{\gamma} = \bigcap_{\xi<\gamma} D_{\xi}$ if $\gamma\in [0,\alpha]$ is limit.

By [9, Lemma 2.2] the following property holds.

Proposition 3. Let *X* be a topological space and $A \subseteq X$. The following conditions are equivalent:

- 1) *A* is reducible;
- 2) there exists a regular closed sequence $\{D_\xi:\xi\in[0,\alpha]\}$ such that $A=\bigcup_{\xi\in I}\left(D_\xi\setminus D_{\xi+1}\right)$ *for some* $I \subseteq [0, \alpha]$.

Lemma 1. Let *X* be a perfectly normal paracompact space and $E \subseteq X$ be a hereditarily Baire subspace. Then *E* is 1-separated from any *G^δ* -set *A* ⊆ *X* disjoint with *E*.

Proof. Fix an arbitrary G_{δ} -set *A* such that $A \cap E = \emptyset$ and assume to the contrary that *A* and *E* are not 1-separated. Notice that $\overline{A} \cap \overline{E} \neq \emptyset$, otherwise $H = X \setminus \overline{A}$ is F_{σ} - and G_{δ} -set which separates *A* and *E*.

Let β be the first ordinal of the cardinality greater than |X|. We define inductively transfinite sequences of subsets of *X* by putting $F_0 = X$, $A_0 = A$ and $E_0 = E$. Suppose that for some ordinal number $\alpha < \beta$ there are already constructed sequences $(F_{\xi})_{\xi<\alpha'}$ $(A_{\xi})_{\xi<\alpha}$ and $(E_{\xi})_{\xi<\alpha}$ of nonempty subsets of *X*. We put

$$
F_{\alpha} = \begin{cases} \overline{A_{\alpha-1}} \cap \overline{E_{\alpha-1}}, & \text{if } \alpha \text{ is isolated,} \\ \bigcap_{\xi < \alpha} F_{\xi}, & \text{if } \alpha \text{ is limit,} \end{cases}
$$
 (2)

$$
A_{\alpha} = A \cap F_{\alpha}, \qquad E_{\alpha} = E \cap F_{\alpha}.
$$
 (3)

We show that the set F_α is nonempty. To obtain a contradiction we suppose that $F_\alpha = \emptyset$. Then sequence

$$
X = F_0 \supset \overline{A_0} \supset F_1 \supset \cdots \supset F_{\xi} \supset \overline{A_{\xi}} \supset F_{\xi+1} \supset \cdots \supset F_{\alpha} = \emptyset
$$

is regular closed in *X*. By Proposition 3, the set

$$
H = \bigcup_{\xi < \alpha} \left(F_{\xi} \setminus \overline{A_{\xi}} \right)
$$

is reducible. Moreover, let us check that

$$
E \subseteq H \subseteq X \setminus A. \tag{4}
$$

Fix $x \in E$ and take $\xi < \alpha$ such that $x \in F_{\xi} \setminus F_{\xi+1}$. Then $x \in E \cap F_{\xi} = E_{\xi} \subseteq E_{\xi}$. Since $x \notin F_{\xi+1}$, $x \notin A_{\xi}$. Hence, $x \in H$.

Now assume $x \in H$ and let $\xi < \alpha$ be such that $x \in F_\xi \setminus A_\xi$. If $x \in A$, then $x \in F_\xi \cap A = A_\xi$, a contradiction. Therefore, $x \in X \setminus A$ and (4) is proved. Since *X* is paracompact, we have that *H* is F_σ and G_δ in *X*. By (4), *H* separates *A* and *E*, which implies a contradiction to our assumption. Hence, $F_\alpha \neq \emptyset$.

Therefore, there is a decreasing sequence $(F_\alpha)_{\alpha<\beta}$ of nonempty closed subsets of X and sequences ${(A_{\alpha})}_{\alpha<\beta'}$ ${(E_{\alpha})}_{\alpha<\beta}$ of nonempty sets which satisfy (2) and (3) for every $\alpha<\beta$.

We put

$$
M = \left\{ \xi < \beta : F_{\xi} \setminus F_{\xi+1} \neq \varnothing \right\} \quad \text{and} \quad N = \left\{ \xi < \beta : F_{\xi} \setminus F_{\xi+1} = \varnothing \right\}.
$$

Take $x_\xi\in F_\xi\setminus F_{\xi+1}$ for every $\xi\in M.$ Notice that all points x_ξ are distinct. Then

$$
|M| = |\{x_{\xi} : \xi \in M\}| \le |X| < |\beta| = |M \cup N|.
$$

Hence, $N \neq \emptyset$. Let $\alpha = \min N$. Then $F_{\alpha} = F_{\alpha+1} = \ldots$. Therefore, the equality

$$
F_{\alpha} = \overline{A \cap F_{\alpha}} \cap \overline{E \cap F_{\alpha}}
$$

is valid by (2) and (3) .

Since *E* is hereditarily Baire and $E \cap F_\alpha$ is a closed subset of *E*, E_α is a Baire space. Notice that A_α is dense G_δ -subset of F_α . It follows that $F_\alpha \setminus A_\alpha$ is an F_σ -set of the first category in F_α . Hence, E_α as a subset of $F_\alpha \setminus E_\alpha$ is a set of the first category in itself. We obtain a contradiction, because E_α is a Baire space.

Hence, our assumption is not valid and we have that *E* and *A* are 1-separated in *X*.

 \Box

4 Extension of Borel 1 functions and infinitely nice sets

Definition 5. Let *X* be a topological space. We define $E \subseteq X$ to be *(finitely) infinitely nice*, if for any disjoint (finite) infinite sequence (E_n) of F_{σ} - and G_δ -subsets of E such that $E=\bigcup E_n$ there *n* exists a disjoint sequence (X_n) of F_σ - and G_δ -subsets of X such that $X = \bigcup$ \bigcup_n *X*^{*n*} and *X*^{*n*} ∩ *E* = *E*^{*n*} for every *n*.

Definition 6. A subset *A* of a topological space *X* is \mathcal{B}_1 -embedded in *X* (\mathcal{B}_1^* -embedded in *X*), if every (bounded) Borel 1 function $f : E \to \mathbb{R}$ can be extended to a (bounded) Borel 1 function $g: X \to \mathbb{R}$.

It was proved in [6, Proposition 8] (see also [8, Theorem 5.3] for functions of the *α*'th Borel class, $\alpha \geq 1$) that for a perfectly normal space *X* and a subset $E \subseteq X$ the following properties are equivalent:

- (*A*) *E* is \mathcal{B}_1 -embedded in *X*;
- (*B*) *E* is 1-separated from any G_{δ} -set $A \subseteq X$ disjoint with *E*.

Moreover, it was shown in [8, Theorem 7.2], that property (*A*) implies

(*C*) *E* is infinitely nice.

It is worth noting [8, Proposition 5.1] that the property of *E* to be finitely nice is equivalent to

 (A') *E* is \mathcal{B}_1^* -embedded in *X*.

Further, it follows from [8, Theorem 7.3] for $\alpha = 1$ that properties (A) and (B) for perfectly normal *X* are equivalent to the following condition.

(*D*) For any Polish space *Y* every Borel 1 function $f : E \to Y$ can be extended to a Borel 1 function $g: X \to Y$.

It is find out that property (*C*) is equivalent to (*A*). In order to show this we need to prove the following result.

Proposition 4. Let *X* be a perfectly normal space and $E \subseteq X$ be infinitely nice. Then *E* is B1-embedded in *X*.

Proof. Let $f : E \to \mathbb{R}$ be a Borel 1 function. Without loss of generality, we may assume that $f(E) = \mathbb{R}$.

Fix $n \in \mathbb{N}$. Consider a covering $\{I_{k,n} : k \in \mathbb{Z}\}\$ of \mathbb{R} by open intervals

$$
I_{k,n} = \left(\frac{k-1}{2^{n+1}}, \frac{k+1}{2^{n+1}}\right).
$$

Since *f* is Borel 1, each set $J_{k,n} = f^{-1}(I_{k,n})$ is F_{σ} in *E* and the family $\{J_{k,n} : k \in \mathbb{N}\}$ covers *E*. By Reduction Theorem [10, §30, VII, Theorem 1] there exists a disjoint family {*Ek*,*ⁿ* : *k* ∈ **N**} of nonempty F_{σ} - and G_{δ} -sets in E such that $E_{k,n} \subseteq J_{k,n}$ and $E = \bigcup E_{k,n}$. Since E is infinitely nice, there exists a disjoint covering $\{X_{k,n}:k\in\mathbb N\}$ of X by F_σ - and $\stackrel{k}{G_\delta}$ -sets such that $X_{k,n}\cap E=E_{k,n}.$

For every $k, n \in \mathbb{N}$ we pick an arbitrary point $y_{k,n} \in I_{k,n}$. For every $x \in X$ we define

$$
f_n(x) = y_{k,n}, \quad \text{if } x \in X_{k,n}.
$$

It is not hard to verify that $f_n : X \to \mathbb{R}$ is a Borel 1 function. Notice that for every $x \in E$ and for every $n \in \mathbb{N}$ we have $x \in E_{l,n+1}$ for some integer *l*. By our construction, there exists $k \in \mathbb{Z}$ such that $E_{l,n+1} \subseteq E_{k,n}$. Hence,

$$
|f_{n+1}(x) - f_n(x)| \le \text{diam } I_{k,n} = \frac{1}{2^n}
$$

for all $n \in \mathbb{N}$ and $x \in E$. Now for all $x \in X$ we put

$$
g_n(x) = \max \Big\{ \min \{ f_{n+1}(x) - f_n(x), 2^{-n} \}, -2^{-n} \Big\}.
$$

Then $g_n: X \to \mathbb{R}$ is Borel 1. Since $|g_n(x)| \leq 2^{-n}$ for all $x \in X$, the series ∞ ∑ *n*=1 $g_n(x)$ is uniformly convergent on *X* to a function, say, $g: X \to \mathbb{R}$. Then *g* is Borel 1 as a sum of uniform convergent series of Borel 1 functions. Moreover, if $x \in E$ and $n \in \mathbb{N}$, then $g_n(x) = f_{n+1}(x) - f_n(x)$ and

$$
\sum_{k=1}^{n} g_k(x) = f_{n+1}(x) - f_1(x).
$$

Moreover,

$$
|f_{n+1}(x) - f(x)| \leq \frac{1}{2^n}.
$$

Therefore, $f_n \rightrightarrows f$ on *E*. It remains to put

$$
h(x) = g(x) + f_1(x)
$$

for every $x \in X$. Hence, *h* is the required Borel 1 extension of *f*.

Now we turn our attention to some examples of \mathscr{B}_1 -embedded sets which will be useful in the next section.

Proposition 5. Let *X* be a perfectly normal space and $E \subseteq X$. If one of the following conditions holds

- (*i*) *E* is G_{δ} ;
- *(ii)* E is Lindelöf and hereditarily Baire;
- *(iii) X* is paracompact and *E* is hereditarily Baire,

then *E* is \mathcal{B}_1 -embedded in *X*.

Proof. In case *(i)*, condition (*B*) is evident. In case *(ii)*, *E* satisfies condition (*A*) according to [6, Theorem 13]. Finally, in case *(iii)*, *E* satisfies (*B*) by Lemma 1. \Box

Remark that in each of cases *(i)*–*(iii)* of Proposition 5 the set *E* is infinitely nice.

 \Box

5 Extension of equi-Lebesgue families

Proposition 6. Let *X* be a perfectly normal space, *E* be \mathcal{B}_1 -embedded in *X* and let *Y* be a Polish space. Then every equi-Lebesgue family $\mathscr{F} \subseteq Y^E$ can be extended to an equi-Lebesgue family $\mathscr{G} \subseteq Y^X$.

Proof. Fix $\varepsilon > 0$ and consider a sequence (E_n) of closed sets in *E* such that $E = \bigcup_{n=1}^{\infty} E_n$ and diam $f(E_n) \leq \varepsilon$ for every $f \in \mathcal{F}$ and $n \in \mathbb{N}$.

Let $H_1 = E_1$ and $H_n = E_n \setminus \bigcup$ *k*<*n* E_k . Since *E* is perfectly normal, then every H_n is F_{σ} - and G_{δ} subset of *E*. Moreover, (H_n) is mutually disjoint sequence and $E = \bigcup H_n$. Since *E* is infinitely *n* nice, there exists a disjoint sequence (X_n) of F_{σ} - and G_{δ} -subsets of X such that $X = \bigcup$ *n Xⁿ* and $X_n \cap E = H_n$ for every $n \in \mathbb{N}$.

Take $f \in \mathcal{F}$. Notice that f is Borel 1 since it has Lebesgue property. For every *n* we fix an arbitrary $y_n^f \in f\left(H_n\right)$. Put $g_n^f=f$ on H_n and $g_n=y_n$ on $E \setminus H_n$. It is easy to see that $g_n^f : E \to f(H_n)$ is Borel 1, since H_n is F_σ and G_δ in E . By property (D) there exists a Borel 1 extension $h_n^f: X \to \overline{f(H_n)}$ of g_n^f . Notice that diam $h_n^f(X) \leq \varepsilon.$ We put

$$
g^f(x) = h_n^f(x),
$$

if $x \in X_n$ for some *n*.

Then $g^f: X \to Y$ is Borel 1 because every X_n is F_σ and G_δ in X. Moreover, $g^f|_E = f$ and $\text{diam } g^f(X_n) \leq \varepsilon \text{ for every } n.$

It remains to put

$$
\mathscr{G} = \left\{ g^f : f \in \mathscr{F} \right\}.
$$

 ${\bf Remark~2.}$ Notice that we can not use property (D) for orbit function $f_{\mathscr{F}}^{\sharp}:E\to (Z,\varrho),$ since Z is not separable in general.

Propositions 5 and 6 imply the following extension theorem.

Theorem 5. Let *X* be a perfectly normal space, *Y* be a Polish space and $E \subseteq X$. If one of the following conditions hold

- (i) *E* is G_{δ} ;
- (ii) *E* is Lindelöf and hereditarily Baire;
- (iii) *X* is paracompact and *E* is hereditarily Baire,

then every equi-Lebesgue family $\mathscr{F}\subseteq Y^E$ can be extended to an equi-Lebesgue family $\mathscr{G}\subseteq Y^X$.

Combining Proposition 2 and Theorem 5 (i), we obtain the main result.

Theorem 6. Let *X* be a perfectly normal space, *Y* be a Polish space and $E \subseteq X$ be an arbitrary set. Then every equi-continuous family $\mathscr{F} \subseteq Y^E$ can be extended to equi-Lebesgue family $\mathscr{G} \subseteq Y^X$.

 \Box

References

- [1] Alikhani-Koopaei A. *Equi-Baire one family of functions on metric spaces: A generalization of equi-continuity; and some applications*. Topology Appl. 2020, **277**, 107170. doi:10.1016/j.topol.2020.107170
- [2] Alikhani-Koopaei A. *On dynamics of families of equi-Baire one functions on metric spaces*. Topology Appl. 2022, **322** (3), 108267. doi:10.1016/j.topol.2022.108267
- [3] Balcerzak M., Holá L., Holý D. Properties of equi-Baire 1 and equi-Lebesgue families of functions. arXiv:2304.07824. doi:10.48550/arXiv.2304.07824
- [4] Balcerzak M., Karlova O., Szuca P. *Equi-Baire 1 families of functions*. Topology Appl. 2022, **305**, 107900. doi:10.1016/j.topol.2021.107900
- [5] Engelking R. General Topology. Heldermann Verlag, Berlin, 1989.
- [6] Kalenda O.F.K., Spurný J. *Extending Baire-one functions on topological spaces*. Topology Appl. 2005, 149, 195– 216. doi:10.1016/J.TOPOL.2004.09.007
- [7] Karlova O. *The decomposable and the ambiguous sets*. Carpathian Math. Publ. 2011, **3** (2), 71–76. (in Ukrainian)
- [8] Karlova O. *On α-embedded sets and extension of mappings*. Comment. Math. Univ. Carolin. 2013, **54** (3), 377–396.
- [9] Koumoullis G. *A generalization of functions of the first class*. Topology Appl. 1993, **50**, 217–239.
- [10] Kuratowski K. Topology, vol. 1. Elsevier, Wasrzawa, 1966.
- [11] Lebesgue H. *Sur les fonctions representables analytiqment ´* . J. Math. Pures Appl. (9) 1905, **1**, 139–216.
- [12] Lecomte D. *How can we recover Baire class one functions?* Mathematika 2003, **50** (1–2), 171–198. doi: 10.1112/S0025579300014881
- [13] Lee P.Y., Tang W.-K., Zhao D. *An equivalent definition of functions of the first Baire class*. Proc. Amer. Math. Soc. 2001, **129** (8), 2273–2275. doi:10.1090/S0002-9939-00-05826-3

Received 02.11.2024

Карлова O. *Властивiсть продовження для одностайно лебеґових сiмей функцiй* // Карпатськi матем. публ. — 2025. — Т.17, №1. — C. 5–13.

Нехай *X* — топологiчний простiр i (*Y*, *d*) — повний метричний сепарабельний простiр. Сiм'ю F функцiй з *X* в *Y* ми називаємо одностайно лебеґовою, якщо для кожного *ε* > 0 iснує таке покриття (*Fn*) простору *X*, яке складається iз замкнених множин, що diam *f*(*Fn*) ≤ *ε* для всіх *n* ∈ \mathbb{N} та *f* ∈ \mathscr{F} .

Ми доводимо, що для досконало нормального простору *X*, повного метричного сепарабельного простору *Y* та довiльної пiдмножини *E* ⊆ *X* кожну одностайно неперервну сiм'ю функцій $\mathscr{F} \subseteq Y^E$ можна продовжити до одностайно лебеґової сім'ї $\mathscr{G} \subseteq Y^X$.

Ключовi слова i фрази: продовження функцiй першого класу Бореля, одностайно берiвська сiм'я функцiй, одонстайно лебеґова сiм'я функцiй, 1-вiдокремна множина, метризовний простiр, топологiчний простiр.