ISSN 2075-9827 e-ISSN 2313-0210 Carpathian Math. Publ. 2025, **17** (1), 5–13 doi:10.15330/cmp.171.5-13

Extension property for equi-Lebesgue families of functions

Karlova O.^{1,2}

Let *X* be a topological space and (Y, d) be a complete separable metric space. For a family \mathscr{F} of functions from *X* to *Y* we say that \mathscr{F} is equi-Lebesgue if for every $\varepsilon > 0$ there is a cover (F_n) of *X* consisting of closed sets such that diam $f(F_n) \le \varepsilon$ for all $n \in \mathbb{N}$ and $f \in \mathscr{F}$.

We prove that if *X* is a perfectly normal space, *Y* is a complete separable metric space and $E \subseteq X$ is an arbitrary set, then every equi-continuous family $\mathscr{F} \subseteq Y^E$ can be extended to an equi-Lebesgue family $\mathscr{G} \subseteq Y^X$.

Key words and phrases: extension of Borel 1 function, equi-Baire 1 family of functions, equi-Lebesgue family of functions, 1-separated set, metrizable space, topological space.

1 Introduction

Recall that a function $f : X \to Y$ between topological spaces X and Y is

- (i) *Baire* 1, if *f* is a pointwise limit of a sequence of continuous functions $f_n : X \to Y$;
- (ii) Borel 1 or F_{σ} -measurable, if for each open set $V \subseteq Y$ the preimage $f^{-1}(V)$ is F_{σ} in X.

We will denote by $B_1(X, Y)$ and $\mathscr{B}_1(X, Y)$ the collections of all Baire 1 and Borel 1 functions, respectively.

It is well-known that for a perfectly normal (in particular, metric) topological space *X* and for a metric space *Y* every Baire 1 function is F_{σ} -measurable; moreover, for $Y = \mathbb{R}$ these two notions are equivalent [10]. But $\mathscr{B}_1(X, Y) \not\subseteq B_1(X, Y)$ even for metric complete separable spaces *X* and *Y* as the following simple example shows: $\chi_{\{0\}} \in \mathscr{B}_1(\mathbb{R}, \mathbb{R}) \setminus B_1(\mathbb{R}, \mathbb{R})$.

Many authors use the term *Baire* 1 for functions between topological spaces in the sense of F_{σ} -measurable function. We prefer to use notion *Borel* 1 instead of *Baire* 1 in such cases and throughout the paper we will cite results of other authors using this terminology.

In 2001, P.Y. Lee, W.-K. Tang and D. Zhao [13] obtained the following ε - δ characterization of Borel 1 functions.

УДК 515.1, 517.51

2020 Mathematics Subject Classification: Primary 54C20, 26A21; Secondary 54C30, 54C50.

Author want to thanks professor Piotr Szuca for his hints about applications of the orbit function for family of equi-Lebesgue maps.

¹ Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubynskyi str., 58012, Chernivtsi, Ukraine

² Jan Kochanowski University of Kielce, 5 Zeromskiego str., 25369, Kielce, Poland

E-mail: o.karlova@chnu.edu.ua

Theorem 1. Let (X, d_X) be a separable metric space and (Y, d_Y) be a complete separable metric space. A function $f: X \to Y$ is Borel 1 if and only if for each $\varepsilon > 0$ there exists a function $\delta_{\varepsilon}^{f}: X \to (0, +\infty)$ such that for all $x, x' \in X$ we have

$$d_X(x,x') < \min\left\{\delta_{\varepsilon}^f(x), \delta_{\varepsilon}^f(x')\right\} \implies d_Y(f(x), f(x')) \le \varepsilon.$$
(1)

Motivated by this characterization, D. Lecomte [12] introduced the notion of equi-Baire 1 family of functions, which was rediscovered later by A. Alikhani-Koopaei [1]. Namely, a family \mathscr{F} of functions from X to Y is said to be *equi-Baire* 1 if for each $\varepsilon > 0$ there exists a function $\delta_{\varepsilon} \colon X \to (0, +\infty)$ such that for all $f \in \mathscr{F}$ and $x, x' \in X$ condition (1) holds.

D. Lecomte [12, Proposition 32] obtained the following characterization of equi-Baire 1 families.

Theorem 2. Let (X, d_X) be a separable metric space and (Y, d_Y) be a complete separable metric space. For a family \mathscr{F} of functions from X to Y the following conditions are equivalent:

- (i) *F* is equi-Baire 1;
- (ii) for every $\varepsilon > 0$ there is a cover (F_n) of X consisting of closed sets such that

diam $f(F_n) \leq \varepsilon$

for all $n \in \mathbb{N}$ and $f \in \mathscr{F}$;

- (iii) there is a finer metrizable separable topology on X making \mathscr{F} equi-continuous;
- (iv) for every nonempty closed subset F of X there is a point x such that the family

$$\{f|_F: f \in \mathscr{F}\}$$

is equi-continuous at *x*.

Properties of equi-Baire 1 families of functions and its applications for dynamic systems were studied recently in [1–4].

In [3], the authors introduced *equi-Lebesgue families* of functions as families with property *(ii)* from Theorem 2. One of the main results of [3] deals with an extension property of equi-Lebesgue families.

Theorem 3 ([3, Theorem 6.1]). Let (X, d_X) be a separable metric space and (Y, d_Y) be a separable complete metric space. Let $H \subset X$ be a nonempty G_{δ} -set and \mathscr{F} be an equi-continuous family of functions from H to (Y, d_Y) . Then all functions in \mathscr{F} can be extended to an equi-Baire 1 family of functions from X to Y.

The aim of this note is a generalization of Theorem 3. Namely, we prove the following fact.

Theorem 4. Let X be a perfectly normal space, Y be a Polish space and $E \subseteq X$ be an arbitrary set. Then every equi-continuous family $\mathscr{F} \subseteq Y^E$ can be extended to equi-Lebesgue family $\mathscr{G} \subseteq Y^X$.

The paper is organized as follows. In Section 2, using standard arguments, we show that every equi-continuous family $\mathscr{F} \subseteq Y^H$ can be extended to an equi-continuous family $\mathscr{G} \subseteq Y^E$ for some G_{δ} -set $E \supseteq H$ in X. Later we consider 1-separated sets in Section 3 and prove that in a perfectly normal space every hereditarily Baire subset is 1-separated from any disjoint G_{δ} -set. This gives a possibility to extend Borel functions from hereditarily Baire subsets of perfectly normal spaces. We prove this in Section 4. Finally, Section 5 contains the proof of the main extension theorem of the paper.

2 Extension of equi-continuous family to a G_{δ} -set

Let *X* be a topological space and (Y, d) be a metric space. For a function $f : X \to Y$ we consider the following property:

(*LP*) for every $\varepsilon > 0$ there is a sequence (F_n) of closed sets in X such that $X = \bigcup_{n=1}^{\infty} F_n$ and diam $f(F_n) < \varepsilon$ for every $n \in \mathbb{N}$.

In case $X = Y = \mathbb{R}$, H. Lebesgue proved [11] that the above mentioned condition is equivalent to the inclusion $f \in \mathscr{B}_1(X, Y)$. In [3], this property of a function is called *Lebesgue property*.

In is known (see [10, §31.II, Theorem 3]), that every function with (*LP*) is Borel 1, and if Y is separable, then the inverse implication is true. It was shown in [3], that the condition of separability on Y is essential.

If a function *f* between metric spaces *X* and *Y* satisfies condition (1), then we will say, following [3], that *f* has LTZ-property.

Let us recall that if a single-function family $\mathscr{F} = \{f\}$ has property (*iv*) of Theorem 2, then we say that *f* has the *point of continuity property* or, briefly, (*PCP*). Similarly, a family \mathscr{F} having (*iv*) is called *a family with the point of equi-continuity property* or (*PECP*) for short.

Let *X* be a topological space and (Y, d) be a bounded metric space. For a family $\mathscr{F} \subseteq Y^X$ of functions we denote by

$$f^{\sharp}_{\mathscr{F}}(x) = \left(f(x)\right)_{f \in \mathscr{G}}$$

the *orbit function* $f_{\mathscr{F}}^{\sharp} : X \to Y^T$, where $T = |\mathscr{F}|$. Assume that $Z = Y^T$ is equipped with the supremum metric

$$\varrho(z_1, z_2) = \sup_{t \in T} d(z_1(t), z_2(t)).$$

Then it is easy to see that the following observation is valid.

Proposition 1. Let X be a topological space and (Y, d) be a bounded metric space. Then

- (1) \mathscr{F} is equi-continuous at $x \in X$ if and only if $f_{\mathscr{F}}^{\sharp} : X \to (Z, \varrho)$ is continuous at x;
- (2) \mathscr{F} is equi-Lebesgue if and only if $f_{\mathscr{F}}^{\sharp} : X \to (Z, \varrho)$ has Lebesgue property;
- (3) \mathscr{F} has (PECP) if and only if $f_{\mathscr{F}}^{\sharp} : X \to (Z, \varrho)$ has (PCP);

(4) if X is metric, then \mathscr{F} is equi-Baire 1 if and only if $f_{\mathscr{F}}^{\sharp} : X \to (Z, \varrho)$ has LTZ-property;

Definition 1. Let $A \subseteq X$. We say that a family $\mathscr{G} \subseteq Y^X$ is an extension of a family $\mathscr{F} \subseteq Y^A$ if for every $f \in \mathscr{F}$ there is $g \in \mathscr{G}$ such that $g|_A = f$.

Let us recall that a topological space is *perfect*, if every its closed subset is G_{δ} .

Proposition 2. Let X be a perfect topological space, (Y,d) be a complete bounded metric space, $H \subseteq X$ be an arbitrary set and $\mathscr{F} \subseteq Y^H$ be an equi-continuous family of functions. Then \mathscr{F} can be extended to an equi-continuous family $\mathscr{G} \subseteq Y^E$ onto a G_{δ} -set $E \supseteq H$.

Proof. Let $\mathscr{F} \subseteq Y^H$ be an equi-continuous family of functions $\mathscr{F} = \{f_t : t \in T\}$. Then $f_{\mathscr{F}}^{\sharp} : H \to (Z, \varrho)$ is continuous on H. Since the space (Z, ϱ) is complete, it follows from [5, 4.3.16] that there exists a continuous extension $g : E \to (Z, \varrho)$ of $f_{\mathscr{F}}^{\sharp}$, where $E = \omega_g^{-1}(0)$. Let $g(x) = (g_t(x))_{t \in T}$ for each $x \in E$. Then family $\mathscr{G} = \{g_t : t \in T\}$ is an equi-continuous extension of \mathscr{F} by Proposition 1. Note that the oscillation function $\omega_g : E \to \mathbb{R}$ is upper semicontinuous, consequently, E is closed in X. Moreover, E is a G_{δ} -subset of a perfect space X.

3 1-separated sets in a perfectly normal paracompact space

In this section, we deal with a notion of 1-separated subsets which plays crucial role in extension of Borel 1 functions.

Definition 2. Subsets *A* and *B* in a topological space *X* are called 1-separated, if there exists an F_{σ} - and G_{δ} -set $H \subseteq X$ such that

$$A\subseteq H\subseteq X\setminus B.$$

In this case, we say that H separates A and B.

Remark 1. Let X be a perfectly normal space.

- Definition 2 is equivalent to the definition of 1-separated sets from [8].
- If A and B are disjoint G_{δ} -subsets of X, then they are 1-separated [10, §30, Theorem 2].

Definition 3. Let us recall that a set $A \neq \emptyset$ in a topological space *X* is reducible (in the sense of *Hausdorff*), if for every closed set $F \neq \emptyset$ we have

$$\overline{F \cap A} \cap \overline{F \setminus A} \neq F.$$

Recall that a topological space is *hereditarily Baire*, if every its closed subset is a Baire space.

Clearly, each open or closed set is reducible. Notice that every reducible subset of a perfectly normal paracompact space is F_{σ} and G_{δ} simultaneously (see [7, Theorem 1]). Moreover, if *X* is hereditarily Baire, the inverse is true [7, Proposition 3.1].

Definition 4. Let $\mathscr{D} = \{D_{\xi} : \xi \in [0, \alpha]\}$ be an ordinal-indexed family of closed subsets of a topological space *X*. Family \mathscr{D} is said to be regular closed in *X*, if

- (a) $D_0 = X \supset D_1 \supset \cdots \supset D_{\alpha} = \emptyset$;
- (b) $D_{\gamma} = \bigcap_{\xi < \gamma} D_{\xi}$ if $\gamma \in [0, \alpha]$ is limit.

By [9, Lemma 2.2] the following property holds.

Proposition 3. Let X be a topological space and $A \subseteq X$. The following conditions are equivalent:

- 1) A is reducible;
- 2) there exists a regular closed sequence $\{D_{\xi} : \xi \in [0, \alpha]\}$ such that $A = \bigcup_{\xi \in I} (D_{\xi} \setminus D_{\xi+1})$ for some $I \subseteq [0, \alpha]$.

Lemma 1. Let X be a perfectly normal paracompact space and $E \subseteq X$ be a hereditarily Baire subspace. Then E is 1-separated from any G_{δ} -set $A \subseteq X$ disjoint with E.

Proof. Fix an arbitrary G_{δ} -set A such that $A \cap E = \emptyset$ and assume to the contrary that A and E are not 1-separated. Notice that $\overline{A} \cap \overline{E} \neq \emptyset$, otherwise $H = X \setminus \overline{A}$ is F_{σ} - and G_{δ} -set which separates A and E.

Let β be the first ordinal of the cardinality greater than |X|. We define inductively transfinite sequences of subsets of X by putting $F_0 = X$, $A_0 = A$ and $E_0 = E$. Suppose that for some ordinal number $\alpha < \beta$ there are already constructed sequences $(F_{\xi})_{\xi < \alpha'} (A_{\xi})_{\xi < \alpha}$ and $(E_{\xi})_{\xi < \alpha}$ of nonempty subsets of X. We put

$$F_{\alpha} = \begin{cases} \overline{A_{\alpha-1}} \cap \overline{E_{\alpha-1}}, & \text{if } \alpha \text{ is isolated,} \\ \bigcap_{\xi < \alpha} F_{\xi}, & \text{if } \alpha \text{ is limit,} \end{cases}$$
(2)

$$A_{\alpha} = A \cap F_{\alpha}, \qquad E_{\alpha} = E \cap F_{\alpha}. \tag{3}$$

We show that the set F_{α} is nonempty. To obtain a contradiction we suppose that $F_{\alpha} = \emptyset$. Then sequence

$$X = F_0 \supset \overline{A_0} \supset F_1 \supset \cdots \supset F_{\xi} \supset \overline{A_{\xi}} \supset F_{\xi+1} \supset \cdots \supset F_{\alpha} = \emptyset$$

is regular closed in X. By Proposition 3, the set

$$H = \bigcup_{\xi < \alpha} \left(F_{\xi} \setminus \overline{A_{\xi}} \right)$$

is reducible. Moreover, let us check that

$$E \subseteq H \subseteq X \setminus A. \tag{4}$$

Fix $x \in E$ and take $\xi < \alpha$ such that $x \in F_{\xi} \setminus F_{\xi+1}$. Then $x \in E \cap F_{\xi} = E_{\xi} \subseteq \overline{E_{\xi}}$. Since $x \notin F_{\xi+1}, x \notin \overline{A_{\xi}}$. Hence, $x \in H$.

Now assume $x \in H$ and let $\xi < \alpha$ be such that $x \in F_{\xi} \setminus \overline{A_{\xi}}$. If $x \in A$, then $x \in F_{\xi} \cap A = A_{\xi}$, a contradiction. Therefore, $x \in X \setminus A$ and (4) is proved. Since X is paracompact, we have that H is F_{σ} and G_{δ} in X. By (4), H separates A and E, which implies a contradiction to our assumption. Hence, $F_{\alpha} \neq \emptyset$.

Therefore, there is a decreasing sequence $(F_{\alpha})_{\alpha < \beta}$ of nonempty closed subsets of X and sequences $(A_{\alpha})_{\alpha < \beta}$, $(E_{\alpha})_{\alpha < \beta}$ of nonempty sets which satisfy (2) and (3) for every $\alpha < \beta$.

We put

$$M = \left\{ \xi < \beta : F_{\xi} \setminus F_{\xi+1} \neq \varnothing \right\} \quad \text{and} \quad N = \left\{ \xi < \beta : F_{\xi} \setminus F_{\xi+1} = \varnothing \right\}.$$

Take $x_{\xi} \in F_{\xi} \setminus F_{\xi+1}$ for every $\xi \in M$. Notice that all points x_{ξ} are distinct. Then

$$|M| = |\{x_{\xi} : \xi \in M\}| \le |X| < |\beta| = |M \cup N|.$$

Hence, $N \neq \emptyset$. Let $\alpha = \min N$. Then $F_{\alpha} = F_{\alpha+1} = \dots$. Therefore, the equality

$$F_{\alpha} = \overline{A \cap F_{\alpha}} \cap \overline{E \cap F_{\alpha}}$$

is valid by (2) and (3).

Since *E* is hereditarily Baire and $E \cap F_{\alpha}$ is a closed subset of *E*, E_{α} is a Baire space. Notice that A_{α} is dense G_{δ} -subset of F_{α} . It follows that $F_{\alpha} \setminus A_{\alpha}$ is an F_{σ} -set of the first category in F_{α} . Hence, E_{α} as a subset of $F_{\alpha} \setminus E_{\alpha}$ is a set of the first category in itself. We obtain a contradiction, because E_{α} is a Baire space.

Hence, our assumption is not valid and we have that *E* and *A* are 1-separated in *X*.

4 Extension of Borel 1 functions and infinitely nice sets

Definition 5. Let X be a topological space. We define $E \subseteq X$ to be (finitely) infinitely nice, if for any disjoint (finite) infinite sequence (E_n) of F_{σ} - and G_{δ} -subsets of E such that $E = \bigcup_n E_n$ there exists a disjoint sequence (X_n) of F_{σ} - and G_{δ} -subsets of X such that $X = \bigcup_n X_n$ and $X_n \cap E = E_n$ for every *n*.

Definition 6. A subset *A* of a topological space *X* is \mathscr{B}_1 -embedded in *X* (\mathscr{B}_1^* -embedded in *X*), if every (bounded) Borel 1 function $f : E \to \mathbb{R}$ can be extended to a (bounded) Borel 1 function $g : X \to \mathbb{R}$.

It was proved in [6, Proposition 8] (see also [8, Theorem 5.3] for functions of the α 'th Borel class, $\alpha \ge 1$) that for a perfectly normal space *X* and a subset $E \subseteq X$ the following properties are equivalent:

- (*A*) *E* is \mathscr{B}_1 -embedded in *X*;
- (*B*) *E* is 1-separated from any G_{δ} -set $A \subseteq X$ disjoint with *E*.

Moreover, it was shown in [8, Theorem 7.2], that property (A) implies

(C) *E* is infinitely nice.

It is worth noting [8, Proposition 5.1] that the property of *E* to be finitely nice is equivalent to

(A') *E* is \mathscr{B}_1^* -embedded in *X*.

Further, it follows from [8, Theorem 7.3] for $\alpha = 1$ that properties (*A*) and (*B*) for perfectly normal *X* are equivalent to the following condition.

(*D*) For any Polish space *Y* every Borel 1 function $f : E \to Y$ can be extended to a Borel 1 function $g : X \to Y$.

It is find out that property (C) is equivalent to (A). In order to show this we need to prove the following result.

Proposition 4. Let *X* be a perfectly normal space and $E \subseteq X$ be infinitely nice. Then *E* is \mathscr{B}_1 -embedded in *X*.

Proof. Let $f : E \to \mathbb{R}$ be a Borel 1 function. Without loss of generality, we may assume that $f(E) = \mathbb{R}$.

Fix $n \in \mathbb{N}$. Consider a covering $\{I_{k,n} : k \in \mathbb{Z}\}$ of \mathbb{R} by open intervals

$$I_{k,n} = \left(\frac{k-1}{2^{n+1}}, \frac{k+1}{2^{n+1}}\right).$$

Since *f* is Borel 1, each set $J_{k,n} = f^{-1}(I_{k,n})$ is F_{σ} in *E* and the family $\{J_{k,n} : k \in \mathbb{N}\}$ covers *E*. By Reduction Theorem [10, §30, VII, Theorem 1] there exists a disjoint family $\{E_{k,n} : k \in \mathbb{N}\}$ of nonempty F_{σ} - and G_{δ} -sets in *E* such that $E_{k,n} \subseteq J_{k,n}$ and $E = \bigcup_{k} E_{k,n}$. Since *E* is infinitely nice, there exists a disjoint covering $\{X_{k,n} : k \in \mathbb{N}\}$ of *X* by F_{σ} - and G_{δ} -sets such that $X_{k,n} \cap E = E_{k,n}$. For every $k, n \in \mathbb{N}$ we pick an arbitrary point $y_{k,n} \in I_{k,n}$. For every $x \in X$ we define

$$f_n(x) = y_{k,n}$$
, if $x \in X_{k,n}$.

It is not hard to verify that $f_n : X \to \mathbb{R}$ is a Borel 1 function. Notice that for every $x \in E$ and for every $n \in \mathbb{N}$ we have $x \in E_{l,n+1}$ for some integer *l*. By our construction, there exists $k \in \mathbb{Z}$ such that $E_{l,n+1} \subseteq E_{k,n}$. Hence,

$$|f_{n+1}(x) - f_n(x)| \le \text{diam } I_{k,n} = \frac{1}{2^n}$$

for all $n \in \mathbb{N}$ and $x \in E$. Now for all $x \in X$ we put

$$g_n(x) = \max \left\{ \min \left\{ f_{n+1}(x) - f_n(x), 2^{-n} \right\}, -2^{-n} \right\}.$$

Then $g_n : X \to \mathbb{R}$ is Borel 1. Since $|g_n(x)| \le 2^{-n}$ for all $x \in X$, the series $\sum_{n=1}^{\infty} g_n(x)$ is uniformly convergent on X to a function, say, $g : X \to \mathbb{R}$. Then g is Borel 1 as a sum of uniform convergent series of Borel 1 functions. Moreover, if $x \in E$ and $n \in \mathbb{N}$, then $g_n(x) = f_{n+1}(x) - f_n(x)$ and

$$\sum_{k=1}^{n} g_k(x) = f_{n+1}(x) - f_1(x).$$

Moreover,

$$|f_{n+1}(x) - f(x)| \le \frac{1}{2^n}.$$

Therefore, $f_n \rightrightarrows f$ on *E*. It remains to put

$$h(x) = g(x) + f_1(x)$$

for every $x \in X$. Hence, *h* is the required Borel 1 extension of *f*.

Now we turn our attention to some examples of \mathscr{B}_1 -embedded sets which will be useful in the next section.

Proposition 5. Let *X* be a perfectly normal space and $E \subseteq X$. If one of the following conditions holds

- (i) E is G_{δ} ;
- (ii) E is Lindelöf and hereditarily Baire;
- (iii) X is paracompact and E is hereditarily Baire,

then *E* is \mathscr{B}_1 -embedded in *X*.

Proof. In case (*i*), condition (*B*) is evident. In case (*ii*), *E* satisfies condition (*A*) according to [6, Theorem 13]. Finally, in case (*iii*), *E* satisfies (*B*) by Lemma 1. \Box

Remark that in each of cases (*i*)–(*iii*) of Proposition 5 the set *E* is infinitely nice.

5 Extension of equi-Lebesgue families

Proposition 6. Let X be a perfectly normal space, E be \mathscr{B}_1 -embedded in X and let Y be a Polish space. Then every equi-Lebesgue family $\mathscr{F} \subseteq Y^E$ can be extended to an equi-Lebesgue family $\mathscr{G} \subseteq Y^X$.

Proof. Fix $\varepsilon > 0$ and consider a sequence (E_n) of closed sets in E such that $E = \bigcup_{n=1}^{\infty} E_n$ and diam $f(E_n) \leq \varepsilon$ for every $f \in \mathscr{F}$ and $n \in \mathbb{N}$.

Let $H_1 = E_1$ and $H_n = E_n \setminus \bigcup_{k < n} E_k$. Since *E* is perfectly normal, then every H_n is F_{σ} - and G_{δ} subset of *E*. Moreover, (H_n) is mutually disjoint sequence and $E = \bigcup_n H_n$. Since *E* is infinitely
nice, there exists a disjoint sequence (X_n) of F_{σ} - and G_{δ} -subsets of *X* such that $X = \bigcup_n X_n$ and $X_n \cap E = H_n$ for every $n \in \mathbb{N}$.

Take $f \in \mathcal{F}$. Notice that f is Borel 1 since it has Lebesgue property. For every n we fix an arbitrary $y_n^f \in f(H_n)$. Put $g_n^f = f$ on H_n and $g_n = y_n$ on $E \setminus H_n$. It is easy to see that $g_n^f : E \to f(H_n)$ is Borel 1, since H_n is F_σ and G_δ in E. By property (D) there exists a Borel 1 extension $h_n^f : X \to \overline{f(H_n)}$ of g_n^f . Notice that diam $h_n^f(X) \leq \varepsilon$. We put

$$g^f(x) = h_n^f(x),$$

if $x \in X_n$ for some n.

Then $g^f : X \to Y$ is Borel 1 because every X_n is F_σ and G_δ in X. Moreover, $g^f|_E = f$ and diam $g^f(X_n) \leq \varepsilon$ for every n.

It remains to put

$$\mathscr{G} = \left\{ g^f : f \in \mathscr{F} \right\}.$$

Remark 2. Notice that we can not use property (*D*) for orbit function $f_{\mathscr{F}}^{\sharp} : E \to (Z, \varrho)$, since *Z* is not separable in general.

Propositions 5 and 6 imply the following extension theorem.

Theorem 5. Let *X* be a perfectly normal space, *Y* be a Polish space and $E \subseteq X$. If one of the following conditions hold

- (i) E is G_{δ} ;
- (ii) E is Lindelöf and hereditarily Baire;
- (iii) X is paracompact and E is hereditarily Baire,

then every equi-Lebesgue family $\mathscr{F} \subseteq Y^E$ can be extended to an equi-Lebesgue family $\mathscr{G} \subseteq Y^X$.

Combining Proposition 2 and Theorem 5 (*i*), we obtain the main result.

Theorem 6. Let X be a perfectly normal space, Y be a Polish space and $E \subseteq X$ be an arbitrary set. Then every equi-continuous family $\mathscr{F} \subseteq Y^E$ can be extended to equi-Lebesgue family $\mathscr{G} \subseteq Y^X$.

References

- [1] Alikhani-Koopaei A. Equi-Baire one family of functions on metric spaces: A generalization of equi-continuity; and some applications. Topology Appl. 2020, 277, 107170. doi:10.1016/j.topol.2020.107170
- [2] Alikhani-Koopaei A. On dynamics of families of equi-Baire one functions on metric spaces. Topology Appl. 2022, 322 (3), 108267. doi:10.1016/j.topol.2022.108267
- Balcerzak M., Holá L., Holý D. Properties of equi-Baire 1 and equi-Lebesgue families of functions. arXiv:2304.07824. doi:10.48550/arXiv.2304.07824
- [4] Balcerzak M., Karlova O., Szuca P. Equi-Baire 1 families of functions. Topology Appl. 2022, 305, 107900. doi:10.1016/j.topol.2021.107900
- [5] Engelking R. General Topology. Heldermann Verlag, Berlin, 1989.
- [6] Kalenda O.F.K., Spurný J. Extending Baire-one functions on topological spaces. Topology Appl. 2005, 149, 195– 216. doi:10.1016/J.TOPOL.2004.09.007
- [7] Karlova O. The decomposable and the ambiguous sets. Carpathian Math. Publ. 2011, 3 (2), 71–76. (in Ukrainian)
- [8] Karlova O. On *α*-embedded sets and extension of mappings. Comment. Math. Univ. Carolin. 2013, **54** (3), 377–396.
- [9] Koumoullis G. A generalization of functions of the first class. Topology Appl. 1993, 50, 217–239.
- [10] Kuratowski K. Topology, vol. 1. Elsevier, Wasrzawa, 1966.
- [11] Lebesgue H. Sur les fonctions représentables analytiqment. J. Math. Pures Appl. (9) 1905, 1, 139–216.
- [12] Lecomte D. How can we recover Baire class one functions? Mathematika 2003, 50 (1–2), 171–198. doi: 10.1112/S0025579300014881
- [13] Lee P.Y., Tang W.-K., Zhao D. An equivalent definition of functions of the first Baire class. Proc. Amer. Math. Soc. 2001, 129 (8), 2273–2275. doi:10.1090/S0002-9939-00-05826-3

Received 02.11.2024

Карлова О. Властивість продовження для одностайно лебегових сімей функцій // Карпатські матем. публ. — 2025. — Т.17, №1. — С. 5–13.

Нехай X — топологічний простір і (Y,d) — повний метричний сепарабельний простір. Сім'ю \mathscr{F} функцій з X в Y ми називаємо одностайно лебеговою, якщо для кожного $\varepsilon > 0$ існує таке покриття (F_n) простору X, яке складається із замкнених множин, що diam $f(F_n) \le \varepsilon$ для всіх $n \in \mathbb{N}$ та $f \in \mathscr{F}$.

Ми доводимо, що для досконало нормального простору X, повного метричного сепарабельного простору Y та довільної підмножини $E \subseteq X$ кожну одностайно неперервну сім'ю функцій $\mathscr{F} \subseteq Y^E$ можна продовжити до одностайно лебегової сім'ї $\mathscr{G} \subseteq Y^X$.

Ключові слова і фрази: продовження функцій першого класу Бореля, одностайно берівська сім'я функцій, одонстайно лебегова сім'я функцій, 1-відокремна множина, метризовний простір, топологічний простір.