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Extending of partial metrics

Mykhaylyuk V.1,2, Myronyk V.2

We investigate the following question: does there exist a compatible extension of a given com-

patible partial metric p : A2 → R on a closed subset A of a partially metrizable space X?

We obtain a positive answer to this question in the case when the corresponding quasi-metric

qp(x, y) = p(x, y) − p(x, x) has an extension that generates a weaker topology on X (in particu-

lar, if qp is bounded). Moreover, we give an example which shows that in general the answer to the

question is negative.
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Introduction

The notion of a partial metric space, as a certain weakening of the notion of metric space,

was introduced by S.G. Matthews [13] in 1992. This notion is quite widely used in research

from the Fixed Point Theory (see, for example, [9] and the literature given there). At the same

time, the topological and metric properties of partial metric spaces are studied [5, 11, 12]. In

connection with this, the following question naturally arises: which of the results of the theory

of metric spaces are transferred without change to the case of partial metric spaces or have

their own analogues? It was proved in [16] that similarly to metrizable spaces, compactness,

countable compactness, and sequential compactness are equivalent for the class of partially

metrizable spaces. Moreover, necessary and sufficient conditions for the metrizability of par-

tial metric spaces are established in [17].

In [6], the following well-known result was proved by F. Hausdorff (see also [3, 7, 8]).

Theorem ([6]). Let X be a metrizable space, A ⊆ X be a closed subset and dA : A2 → R be

a compatible metric on A. Then there exists a compatible metric d : X2 → R on X such that

d(x, y) = dA(x, y) for every x, y ∈ A.

Notice that this result was developed and generalized by many mathematicians (see, for

example, [1, 2, 18, 20] and the literature given there).

This article is devoted to the research of the following question.

Question 1. Let X be a partially metrizable space, A ⊆ X be a closed subset of X and

p : A2 → R be a compatible partial metric on A. Does there exist a compatible partial metric

p̃ on X such that p̃(x, y) = p(x, y) for every x, y ∈ A?
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First, we investigate a similar question on the extending of a given quasi-pseudometric q

from a given closed subset A of a quasi-metrizable space X to the entire space X. In Section 2,

we apply Bing’s approach to the proof of Hausdorff’s Theorem from [3] and prove the pos-

sibility of such an extension of q in the case when q is upper bounded by some compatible

quasi-pseudometric on X. In Section 3, we introduce a notion of weakly compatible quasi-

pseudometrics and show that the existence of a compatible extension of q is equivalent to the

existence of a weakly compatible extension q. In particular, it implies that every bounded

quasi-pseudometric has a compatible extension. In Section 4, we obtain a positive answer

to Question 1 in the case when the corresponding quasi-metric qp has a weakly compatible

extension (in particular, if qp is bounded) using the result on the extending of quasi-metric.

In Section 5, we give an example that shows the essentiality of the existence of a weakly com-

patible extension for extending of quasi-pseudometric and partial metric. This example, in

particular, shows that in general the answer to Question 1 is negative.

1 Basic notions and denotations

A function q : X2 → [0,+∞) is called a quasi-pseudometric on a set X (see [10, 19]) if

(q1) q(x, x) = 0,

(q2) q(x, z) ≤ q(x, y) + q(y, z)

for all x, y, z ∈ X. A pair (X, q), where X is a set and q is a quasi-pseudometric on X, is called

a quasi-pseudometric space.

Let (X, q) be a quasi-pseudometric space. For every x ∈ X the balls

Bq(x, ε) =
{

y ∈ X : q(x, y) < ε
}

, ε > 0,

form a base of the quasi-pseudometric topology τq at the point x.

A quasi-pseudometric q : X2 → [0,+∞) is called a quasi-metric on X (see [14]) if

(q3) x = y ⇔ q(x, y) = q(y, x) = 0

for every x, y ∈ X (this means that (X, q) is a T0-space); and an asymmetric metric on X (see [4])

if

(q4) x = y ⇔ q(x, y) = 0

for every x, y ∈ X (this means that (X, q) is a T1-space).

A function p : X2 → [0,+∞) is called a partial metric on X (see [14]) if

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y)

for all x, y, z ∈ X. A pair (X, p), where X is a set and p is a quasi-pseudometric on X, is called

a partially metric space.

For any partial metric p : X2 → [0,+∞) the function qp : X2 → [0,+∞) defined by

qp(x, y) = p(x, y)− p(x, x), (x, y) ∈ X2,

is a quasi-metric on X and the topology of the partial metric space (X, p) is the topology of the

quasi-metric space (X, qp) (see [14, Theorem 4.1]).
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Moreover, the function dp : X2 → [0,+∞) defined by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y), (x, y) ∈ X2,

is a metric on X.

Quasi-pseudometrics p and q on a set X are called equivalent if the topologies τp and τq

coincide.

Let X be a topological space and A ⊆ X. We say that a quasi-pseudometric (partial metric)

p on A is compatible if p generates on A the topology of the subspace A of X. A topological space

X is quasi-pseudometrizable (quasi-metrizable, partially metrizable) if X has a compatible quasi-

pseudometric (quasi-metric, partial metric) on X.

Let A ⊆ X, p : X2 → [0,+∞) and q : A2 → [0,+∞) be quasi-metrics (partial metrics). We

say that p is an extension of q if p(x, y) = q(x, y) for every x, y ∈ A.

2 Extending of bounded quasi-pseudometric

We can prove the following proposition analogously as [3, Theorem 5] (see also [8, Theo-

rem 24]).

Proposition 1. Let (X, r) be a quasi-pseudometric space, A ⊆ X and (A, q) be a quasi-pseudo-

metric space such that

(i) A is τr-closed,

(ii) q(x, y) ≤ r(x, y) for every x, y ∈ A,

(iii) the quasi-pseudometrics r and q are equivalent on A.

Then there exists a quasi-pseudometric q̃ on X such that

(α) q̃ is an extension of q,

(β) q̃(x, y) ≤ r(x, y) for every x, y ∈ X,

(γ) the quasi-pseudometrics r and q̃ are equivalent on X.

Proof. Consider the following function q̃ : X2 → R, defined by

q̃(x, y) = min
{

r(x, y), inf
a,b∈A

(

r(x, a) + q(a, b) + r(b, y)
)

}

.

Clearly, q̃ satisfies (β). Moreover, since the quasi-pseudometrics q and r satisfy (ii), we have

q̃(x, y) = min
{

r(x, y), inf
b∈A

(

q(x, b) + r(b, y)
)

}

= inf
b∈A

(

q(x, b) + r(b, y)
)

for every x ∈ A and y ∈ X,

q̃(x, y) = min
{

r(x, y), inf
a∈A

(

r(x, a) + q(a, y)
)

}

= inf
a∈A

(

r(x, a) + q(a, y)
)

for every x ∈ X and y ∈ A,

q̃(x, y) = q(x, y)

for every x, y ∈ A. That is, q̃ satisfies (α).
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Show that q̃ is a quasi-pseudometric on X. The condition (q1) is obvious. Let us show (q2).

Let x, y, z ∈ X. We consider the following four cases.

Case 1. Let q̃(x, y) = r(x, y) and q̃(y, z) = r(y, z). Then

q̃(x, y) + q̃(y, z) = r(x, y) + r(y, z) ≥ r(x, z) ≥ q̃(x, z).

Case 2. Let q̃(x, y) = r(x, y) and q̃(y, z) = inf
a,b∈A

(

r(y, a) + q(a, b) + r(b, z)
)

. Then

q̃(x, y) + q̃(y, z) = inf
a,b∈A

(

r(x, y) + r(y, a) + q(a, b) + r(b, z)
)

≥ inf
a,b∈A

(

r(x, a) + q(a, b) + r(b, z)
)

≥ q̃(x, z).

Case 3. Let q̃(x, y) = inf
a,b∈A

(

r(x, a) + q(a, b) + r(b, y)
)

and q̃(y, z) = r(y, z). Then

q̃(x, y) + q̃(y, z) = inf
a,b∈A

(

r(x, a) + q(a, b) + r(b, y) + r(y, z)
)

≥ inf
a,b∈A

(

r(x, a) + q(a, b) + r(b, z)
)

≥ q̃(x, z).

Case 4. Let

q̃(x, y) = inf
a,b∈A

(

r(x, a) + q(a, b) + r(b, y)
)

and

q̃(y, z) = inf
a,b∈A

(

r(y, a) + q(a, b) + r(b, z)
)

.

Then according to (ii), we have

q̃(x, y) + q̃(y, z) = inf
a,b,c,d∈A

(

r(x, a) + q(a, b) + r(b, y) + r(y, c) + q(c, d) + r(d, z)
)

≥ inf
a,d∈A

(

r(x, a) + q(a, d) + r(d, z)
)

≥ q̃(x, z).

What is left is to show (γ). According to (β), we have τq̃ ⊆ τr. It remains to verify that

τq̃ ⊇ τr. Let x0 ∈ X and ε > 0. To show that there exists δ > 0 such that Bq̃(x0, δ) ⊆ Br(x0, ε)

we consider the following two cases.

Case A. Let x0 ∈ A. According to (iii), there exists δ1 > 0 such that for every x ∈ A we have

q(x0, x) < δ1 ⇒ r(x0, x) <
ε

2
.

We set δ = min
{

δ1, ε
2

}

. Let x ∈ Bq̃(x0, δ). Since q̃(x0, x) = inf
a∈A

(

r(x0, a) + r(a, x)
)

, there exists

an a ∈ A such that

q(x0, a) + r(a, x) < δ.

Then q(x0, a) < δ1 and r(a, x) < ε
2 . Therefore,

r(x0, x) ≤ r(x0, a) + r(a, x) <
ε

2
+

ε

2
= ε.

Case B. Let x0 ∈ X \ A. Since A is τr-closed, there exists a positive number δ ≤ ε such that

Br(x0, δ) ∩ A = ∅. Notice that

q̃(x0, x) = inf
a∈A

(

r(x0, a) + q(a, x)
)

≥ δ

for every x ∈ A. Then for every x ∈ Bq̃(x0, δ) we have

ε ≥ δ > q̃(x0, x) = min
{

r(x0, x), inf
a,b∈A

(

r(x0, a) + q(a, b) + r(b, x)
)

}

= r(x0, x).
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3 Weakly compatible and bounded quasi-pseudometric

In this section, we investigate the existence of a compatible quasi-pseudometric r on a quasi-

pseudometrizable space, which for a given quasi-pseudometric q satisfies condition (ii) from

Proposition 1.

We say that a quasi-pseudometric q on a topological space (X, τ) is weakly compatible

if τq ⊆ τ.

Proposition 2. Let X be a quasi-pseudometrizable space, A ⊆ X be a closed subset of X and

q be a bounded compatible quasi-pseudometric on A. Then there exists a weakly compatible

quasi-pseudometric q̃ on X such that q̃(x, y) = q(x, y) for every x, y ∈ A.

Proof. Choose C > 0 such that q(x) ≤ C for every x ∈ A and consider the function q̃ : X2 → R,

defined by

q̃(x, y) =















q(x, y), if x, y ∈ A,

0, if x ∈ X and y ∈ X \ A,

C, if x ∈ X \ A and y ∈ A.

Clearly, q̃ is an extension of q that satisfies (q1). Show that q̃ is a quasi-pseudometric on X,

that is, q̃ satisfies (q2). Let x, y, z ∈ X. We consider the following four cases.

If z ∈ X \ A, then q̃(x, z) = 0 ≤ q̃(x, y) + q̃(y, z).

If z ∈ A and y ∈ X \ A, then q̃(x, y) + q̃(y, z) ≥ q̃(y, z) = C ≥ q̃(x, z).

If y ∈ A and x ∈ X \ A, then q̃(x, y) + q̃(y, z) ≥ q̃(x, y) = C ≥ q̃(x, z).

Finally, if x, y, z ∈ A, then q̃(x, y) + q̃(y, z) = q(x, y) + q(y, z) ≥ q(x, z) = q̃(x, z).

Let τ be the topology of X. Since q is compatible on the τ-closed set A and q̃(x, y) = 0 for

every x ∈ X and y ∈ X \ A, we have

τq̃ =
{

(X \ A) ∪ B : B ∈ τq
}

∪ {∅} ⊆ τ.

Thus, q̃ is weakly compatible on X.

Proposition 3. Let p and q be quasi-pseudometrics on a set X such that τp ⊆ τq. Then the

function r = p + q is a quasi-pseudometric on X such that τr = τq.

Proof. Clearly, r is a quasi-pseudometric on X. Moreover, since q ≤ r, we get τq ⊆ τr. It remains

to show that τr ⊆ τq. Let x0 ∈ X be a fixed point, ε > 0 and U =
{

x ∈ X : r(x0, x) < ε
}

.

Consider the τq-neighbourhood U1 =
{

x ∈ X : q(x0, x) <
ε
2

}

of x0 and τp-neighbourhood

U2 =
{

x ∈ X : p(x0, x) <
ε
2

}

of x0. Since τp ⊆ τq, U1 ∩ U2 is a τq-neighbourhood of x0.

Moreover, U1 ∩ U2 ⊆ U. Thus, U is a τq-neighbourhood of x0 and τr ⊆ τq.

Proposition 4. Let X be a quasi-pseudometrizable space, A ⊆ X be a closed subset of X

and q be a bounded compatible quasi-pseudometric on A. Then the following conditions are

equivalent:

(i) there exists a compatible quasi-pseudometric q̃ on X such that q̃(x, y) = q(x, y) for every

x, y ∈ A,

(ii) there exists a weakly compatible quasi-pseudometric q̃ on X such that q̃(x, y) = q(x, y)

for every x, y ∈ A.
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Proof. The implication (i) ⇒ (ii) is obvious.

(ii) ⇒ (i). Let q1 be a compatible quasi-pseudometric and q2 be a weakly compatible

quasi-pseudometric on X such that q2(x, y) = q(x, y) for every x, y ∈ A. By Proposition 3 the

function r = q1 + q2 is a compatible quasi-pseudometric on X. Moreover, q(x, y) ≤ r(x, y) for

every x, y ∈ A. According to Proposition 1, there exists a compatible quasi-pseudometric q̃ on

X such that q̃(x, y) = q(x, y) for every x, y ∈ A.

Corollary 1. Let X be a quasi-pseudometrizable space, A ⊆ X be a closed subset of X and

q be a bounded compatible quasi-pseudometric on A. Then there exists a compatible quasi-

pseudometric q̃ on X such that q̃(x, y) = q(x, y) for every x, y ∈ A.

4 Extending of partial metric

In this section, we obtain the main result of our paper, which gives a positive answer to

Question 1 using Corollary 1 and the following well-known McShane’s result on the extending

of a Lipschitz function.

Proposition 5 ([15, Theorem 1]). Let (X, d) be a metric space, A ⊆ X be a subset and f : A → R

be a Lipschitz function with a constant C ≥ 0. Then there exists a Lipschitz function g : X → R

with the constant C such that g(x) = f (x) for every x ∈ A.

Proposition 6. Let (X, p) be a partial metric space. Then the function f : X → R, defined by

f (x) = p(x, x), is a 1-Lipschitz function with respect to the metric dp.

Proof. The statement follows immediately from the next inequality

f (x)− f (y) = p(x, x)− p(y, y) = dp(x, y)− 2
(

p(x, y)− p(x, x)
)

≤ dp(x, y).

Proposition 7. Let (X, d) be a metric space and f : X → [0,+∞) be a 1-Lipschitz function.

Then the function p : X2 → R, defined by

p(x, y) =
1

2

(

d(x, y) + f (x) + f (y)
)

,

is a partial metric on X such that d = dp and p(x, x) = f (x) for every x ∈ X.

Proof. Clearly, p(x, x) = f (x) for every x ∈ X. It remains to verify (p1)− (p4).

(p1) The following implications

x = y ⇔ d(x, y) = 0 ⇔ p(x, x) = p(x, y) = p(y, y)

are obvious.

(p2) Since f is 1-Lipschitz, f (y) ≥ f (x)− d(x, y) for every x, y ∈ X. Then

p(x, y)− p(x, x) =
1

2

(

d(x, y)− f (x) + f (y)
)

≥
1

2

(

d(x, y)− f (x) + f (x) − d(x, y)
)

= 0.

Condition (p3) is obvious.

(p4) For every x, y, z ∈ X we have

p(x, y) + p(y, z) =
1

2

(

d(x, y) + f (x) + f (y) + d(y, z) + f (y) + f (z)
)

≥
1

2

(

d(x, z) + f (x) + f (z)
)

+ f (y) = p(x, z) + p(y, y).
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The following theorem is the main result of the paper.

Theorem 2. Let X be a partial metrizable space, A ⊆ X be a closed subset of X and p : A2 → R

be a compatible partial metric on A such that the quasi-metric qp is bounded. Then there exists

a compatible partial metric p̃ : X2 → R on X such that p̃(x, y) = p(x, y) for every x, y ∈ A.

Proof. It follows from Corollary 1 that there exists a compatible quasi-pseudometric q̃ on X

such that q̃(x, y) = qp(x, y) for every x, y ∈ A. Since X is partial metrizable, X is a T0-space.

Therefore, the compatible quasi-pseudometric q̃ is a quasi-metric.

Consider the metric d : X2 → R, defined by d(x, y) = q̃(x, y) + q̃(y, x). Clearly, d is an

extension of dp. It follows from Proposition 6 that the function f : (A, dp) → R, defined

by f (x) = p(x, x), is an 1-Lipschitz function. According to Proposition 5, there exists an

1-Lipschitz function f̃ : (X, d) → [0,+∞) such that f̃ |A = f . It remains to consider the

function p̃ : X2 → R, defined by

p̃(x, y) =
1

2

(

d(x, y) + f̃ (x) + f̃ (y)
)

,

which is a partial metric according to Proposition 7. Clearly, p̃ is an extension of p. Moreover,

since q p̃ = q̃, p̃ is compatible on X.

5 Examples and questions

The following example shows the essentiality of the existence of a weakly compatible ex-

tension in Theorem 2 and Corollary 1. This example shows that, in general, the answer to

Question 1 is negative.

Proposition 8. There exist a partial metric space (X, p), a τqp-closed set A ⊆ X and a partial

metric r on A such that

(1) qp and qr are equivalent on A,

(2) τqs 6⊆ τqp for every extension s of r on X.

Proof. Let X = {xn : n = 0, 1, 2, . . . } be any countable set, where xn 6= xk for any distinct n, k,

and let p : X2 → R be a function defined by

p(x, y) = p(y, x) =























0, if x = y = x0,

1, if x = y 6= x0,

1, if x 6= y = x0,

2, otherwise.

We show that p is a partial metric on X. It is enough to verify condition (p4) for the case of

distinct x, y, z ∈ X. If y = x0 then

p(x, y) + p(y, z) = 1 + 1 = p(x, z) = p(x, z) + p(y, y).

If y 6= x0 then p(x, y) = 2 or p(y, z) = 2. Therefore,

p(x, y) + p(y, z) ≥ 2 + 1 ≥ p(x, z) + p(y, y).
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Thus, p satisfies (p4) and p is a partial metric on X.

Notice that

qp(x, y) =

{

0, if x = y or y = x0,

1, otherwise.

Consider the set A = {xn : n ∈ N}. Clearly, A is a τqp-closed discrete subset of X.

Consider the metric r : A2 → R defined by

r(xn, xk) = |n − k|.

It is obvious that qr = r and qp are equivalent on A. Assume that a partial metric s : X2 → R

is an extension of r such that τqs ⊆ τqp . Then qs is an extension of qr = r on X. Since x0 ∈ G

for every nonempty G ∈ τqp , x0 ∈ G for every nonempty G ∈ τqs . Therefore, qs(xn, x0) = 0 for

every n ∈ N and

qs(x0, x1) = qs(xn, x0) + qs(x0, x1) ≥ qs(xn, x1) = r(xn, x1) = n − 1

for every n ∈ N, a contradiction.

Corollary 2. There exists a quasi-metrizable space X, a closed subset A of X and a compatible

quasi-metric q on A such that q cannot be extended to a compatible quasi-metric on X.

Proof. It is enough to consider the space X, the set A and the quasi-metric q = qr from

Proposition 8.

Notice that the partial metrizable space X from Proposition 8 is not a T1-space, that is, X

has no compatible asymmetric metric. Therefore, the following questions naturally arise.

Question 3. Let X be a partially metrizable T1-space, A ⊆ X be a closed subset of X and

p : A2 → R be a compatible partial metric on A. Does there exist a compatible partial metric p̃

on X which is an extension of p?

Question 4. Let X be a quasi-metrizable T1-space, A ⊆ X be a closed subset of X and

q : A2 → R be a compatible quasi-metric on A. Does there exist a compatible partial

metric q̃ on X which is an extension of q?
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У статтi дослiджується таке питання: чи кожну часткову метрику p : A2 → R, яка ви-

значена на замкненiй пiдмножинi A частково метризовного простору X i узгоджена з його

топологiєю на A, можна продовжити на весь простiр зi збереженням топологiчної структу-

ри? Отримано позитивну вiдповiдь на це питання у випадку, коли вiдповiдна квазiметрика

qp(x, y) = p(x, y) − p(x, x) має продовження, яке породжує слабшу топологiю на просторi X

(зокрема, якщо qp обмежена). Крiм того, побудовано приклад, який у загальному випадку дає

негативну вiдповiдь на сформульоване вище питання.

Ключовi слова i фрази: часткова метрика, квазiметрика, частково метризовний простiр, ме-

тризовний простiр, продовження метрики, продовження квазiметрики, продовження частко-

вої метрики, топологiчний простiр.


