References

  1. Amanov T.I. Representation and embedding theorems for function spaces \(S^{(r)}_{p,\theta}B(\mathbb{R}_n)\) and \(S^{(r)}_{p,\theta^*}B,\) \((0\leq x_j\leq2\pi; j=1,\ldots,n)\). Tr. Mat. Inst. Steklova 1965, 77, 5–34. (in Russian)
  2. Bari N.K., Stechkin S.B. The best approximations and differential properties of two conjugate functions. Trans. Moscow Math. Soc. 1956, 5, 483–522. (in Russian)
  3. Belinsky E.S. Estimates of entropy numbers and Gaussian measures for classes of functions with bounded mixed derivative. J. Approx. Theory 1998, 93 (1), 114–127. doi:10.1006/jath.1997.3157
  4. Bernstein S.N. Collected work, Vol. II. Constructive theory of functions (1931–1953). Nauka, Moscow, 1954. (in Russian)
  5. Dũng D., Temlyakov V.N., Ullrich T. Hyperbolic Cross Approximation. Adv. Courses in Math. Birkhauser, CRM Barcelona, 2018.
  6. Fedunyk O.V. Linear widths of the classes \(B^{\Omega}_{p,\theta}\) of periodic functions of many variables in the space \(L_q\). Ukrain. Math. J. 2006, 58 (1), 103–117. doi:10.1007/s11253-006-0053-1 (translation of Ukrain. Mat. Zh. 2006, 58 (1), 93–104. (in Ukrainian))
  7. Fedunyk-Yaremchuk O.V., Hembars’ka S.B. Best orthogonal trigonometric approximations of the Nikol’skii-Besov-type classes of periodic functions of one and several variables. Carpathian Math. Publ. 2022, 14 (1), 171–184. doi:10.15330/cmp.14.1.171-184
  8. Fedunyk-Yaremchuk O.V., Hembars’ka S.B. Estimates of approximative characteristics of the classes \(B^{\Omega}_{p,\theta}\) of periodic functions of several variables with given majorant of mixed moduli of continuity in the space \(L_{q}\). Carpathian Math. Publ. 2019, 11 (2), 281–295. doi:10.15330/cmp.11.2.281-295
  9. Fedunyk-Yaremchuk O.V., Solich K.V. Estimates of approximative characteristics of the classes \(B^{\Omega}_{p,\theta}\) of periodic functions of many variables with given majorant of mixed continuity moduli in the space \(L_{\infty}\). J. Math. Sci. (N.Y.) 2018, 231 (1), 28–40. doi:10.1007/s10958-018-3803-3 (translation of Ukr. Mat. Visn. 2017, 14 (3), 345–360. (in Ukrainian))
  10. Hembars’ka S.B., Fedunyk-Yaremchuk O.V. Approximation characteristics of the Nikol’sky-Besov-type classes of periodic single- and multivariable functions in the \(B_{1,1}\) space. J. Math. Sci. (N.Y.) 2021, 259 (1), 75–87. doi:10.1007/s10958-021-05600-2 (translation of Ukr. Mat. Visn. 2021, 18 (3), 289–405. (in Ukrainian))
  11. Hembars’ka S.B., Romanyuk I.A., Fedunyk-Yaremchuk O.V. Characteristics of the linear and nonlinear approximations of the Nikol’skii-Besov-type classes of periodic functions of several variables. J. Math. Sci. (N.Y.) 2023, 274 (3), 307–326. doi:10.1007/s10958-023-06602-y (translation of Ukr. Mat. Visn. 2023, 20 (2), 161–185. (in Ukrainian))
  12. Hembars’ka S.B., Zaderei P.V. Best orthogonal trigonometric approximations of the Nikol’skii-Besov-type classes of periodic functions in the space \(B_{\infty,1}\). Ukrain. Math. J. 2022, 74 (6), 883–895. doi:10.1007/s11253-022-02115-0 (translation of Ukrain. Mat. Zh. 2022, 74 (6), 772–783. doi:10.37863/umzh.v74i6.7070 (in Ukrainian))
  13. Hembars’kyi M.V., Hembars’ka S.B. Widths of the classes \(B^{\Omega}_{p,\theta}\) of periodic functions of many variables in the space \(B_{1,1}\). J. Math. Sci. (N.Y.) 2018, 235 (1), 35–45. doi:10.1007/s10958-018-4056-x (translation of Ukr. Mat. Visn. 2018, 15 (1), 43–56. (in Ukrainian))
  14. Hembars’kyi M.V., Hembars’ka S.B., Solich K.V. The best approximations and widths of the classes of periodic functions of one and several variables in the space \(B_{\infty,1}\). Mat. Stud. 2019, 51 (1), 74–85. doi:10.15330/ms.51.1.74-85 (in Ukrainian)
  15. Ismagilov R.S. Diameters of sets in normed linear spaces, and the approximation of functions by trigonometric polynomials. Russian Math. Surveys 1974, 29 (3), 169–186. doi:10.1070/RM1974v029n03ABEH001287 (translation of Uspekhi Mat. Nauk 1974, 29 (3(177)), 161–178. (in Russian))
  16. Kashin B.S., Temlyakov V.N. On best \(m\)-term approximations and the entropy of sets in the space \(L^1\). Math. Notes 1994, 56 (5–6), 1137–1157. doi:10.1007/BF02274662 (translation of Mat. Zametki 1994, 189 (5), 57–86. (in Russian))
  17. Kolmogorov A.N. Über die beste Annaherung von Funktionen einer gegebenen Funktionenklasse. Ann. of Math. 1936, 37 (1), 107–110. doi:10.2307/1968691
  18. Lizorkin P.I., Nikol’skii S.M. Spaces of functions with mixed smoothness from the decomposition point of view. Proc. Steklov Inst. Math. 1990, 187, 163–184. (translation of Tr. Mat. Inst. Steklova 1989, 187, 143–161. (in Russian))
  19. Nikol’skii S.M. Functions with dominant mixed derivative, satisfying a multiple Holder condition. Sibirsk. Mat. Zh. 1963, 4 (6), 1342–1364. (in Russian)
  20. Nikol’skii S.M. Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of severaly variables. Tr. Mat. Inst. Steklova 1951, 38, 244–278. (in Russian)
  21. Pozharska K.V., Romanyuk A.S. Estimates for the approximation characteristics of the Nikol’skii-Besov classes of functions with mixed smoothness in the space \(B_{q,1}\). arXiv:2404.05451. doi:10.48550/arXiv.2404.05451
  22. Pustovoitov N.N. Representation and approximation of periodic functions of several variables with given mixed modulus of continuity. Anal. Math. 1994, 20, 35–48. doi:10.1007/BF01908917 (in Russian)
  23. Romanyuk A.S. Approximative characteristics of the classes of periodic functions of many variables. Proc. of the Institute of Mathematics of the NAS of Ukraine, Kiev, 2012, 93. (in Russian)
  24. Romanyuk A.S. Approximation of Besov classes of periodic functions of many variables in the space \(L_q\). Ukrain. Mat. Zh. 1991, 43 (10), 1398–1408. (in Russian)
  25. Romanyuk A.S. Best approximations and widths of classes of periodic functions of several variables. Sb. Math. 2008, 199 (2), 253–275. doi:10.1070/SM2008v199n02ABEH003918 (translation of Mat. Sb. 2008, 199 (2), 93–114. doi:10.4213/sm3685 (in Russian))
  26. Romanyuk A.S. Diameters and best approximation of the classes \(B^r_{p,\theta}\) of periodic functions of several variables. Anal. Math. 2011, 37, 181–213. doi:10.1007/s10476-011-0303-9 (in Russian)
  27. Romanyuk A.S. Entropy numbers and widths for the classes \(B^{r}_{p,\theta}\) of periodic functions of many variables. Ukrain. Math. J. 2017, 68 (10), 1620–1636. doi:10.1007/s11253-017-1315-9 (translation of Ukrain. Mat. Zh. 2016, 68 (10), 1403–1417. (in Russian))
  28. Romanyuk A.S. Kolmogorov and trigonometric widths of Besov classes \(B^r_{p,\theta}\) of multivariate periodic functions. Sb. Math. 2006, 197 (1), 69–93. doi:10.1070/SM2006v197n01ABEH003747 (translation of Mat. Sb. 2006, 197 (1), 71–96. (in Russian))
  29. Romanyuk A.S. Kolmogorov widths of Besov classes \(B^r_{p,\theta}\) in the metric of the space \(L_{\infty}\). Ukr. Math. Bull. 2005, 2, 205–222. (translation of Ukr. Mat. Visn. 2005, 2, 201–208. (in Russian))
  30. Romanyuk A.S. Linear widths of the Besov classes of periodic functions of many variables. I. Ukrain. Math. J. 2001, 53 (5), 744–761. doi:10.1023/A:1012530317130 (translation of Ukrain. Mat. Zh. 2001, 53 (5), 647–661. (in Russian))
  31. Romanyuk A.S. Linear widths of the Besov classes of periodic functions of many variables. II. Ukrain. Math. J. 2001, 53 (6), 965–977. doi:10.1023/A:1013356019431 (translation of Ukrain. Mat. Zh. 2001, 53 (6), 820–829. (in Russian))
  32. Romanyuk A.S. The best trigonometric approximations and the Kolmogorov diameters of the Besov classes of functions of many variables. Ukrain. Math. J. 1993, 45 (5), 663–675. doi:10.1007/BF01058208 (translation of Ukrain. Mat. Zh. 1993, 45 (5), 724–738. (in Russian))
  33. Romanyuk A.S., Romanyuk V.S. Approximating characteristics of the classes of periodic multivariate functions in the space \(B_{\infty,1}\). Ukrain. Math. J. 2019, 71 (2), 308–321. doi:10.1007/s11253-019-01646-3 (translation of Ukrain. Mat. Zh. 2019, 71 (2), 271–282. (in Ukrainian))
  34. Romanyuk A.S., Romanyuk V.S. Approximative characteristics and properties of operators of the best approximation of classes of functions from the Sobolev and Nikol’skii-Besov spaces. J. Math. Sci. (N.Y.) 2021, 252 (4), 508–525. doi:10.1007/s10958-020-05177-2 (translation of Ukr. Mat. Visn. 2020, 17 (3), 372–395. (in Ukrainian))
  35. Romanyuk A.S., Romanyuk V.S. Estimation of some approximating characteristics of the classes of periodic functions of one and many variables. Ukrain. Math. J. 2020, 71 (8), 1257–1272. doi:10.1007/s11253-019-01711-x (translation of Ukrain. Mat. Zh. 2019, 71 (8), 1102–1115. (in Ukrainian))
  36. Romanyuk A.S., Romanyuk V.S., Pozharska K.V., Hembars’ka S.B. Characteristics of linear and nonlinear approximation of isotropic classes of periodic multivariate functions. Carpathian Math. Publ. 2023, 15 (1), 78–97. doi:10.15330/cmp.15.1.78-94
  37. Romanyuk A.S., Yanchenko S. Ya. Approximation of classes of periodic functions of one and many variables from the Nikol’skii-Besov and Sobolev spaces. Ukrain. Math. J. 2022, 74 (6), 967–980. doi:10.1007/s11253-022-02110-5 (translation of Ukrain. Mat. Zh. 2022, 74 (6), 844–855. doi:10.37863/umzh.v74i6.7141 (in Ukrainian))
  38. Romanyuk A.S., Yanchenko S.Ya. Estimates of approximation characteristics and properties of operators of the best approximation for the classes of periodic functions in the space \(B_{1,1}\). Ukrain. Math. J. 2022, 73 (8), 1278–1298. doi:10.1007/s11253-022-01990-x (translation of Ukrain. Mat. Zh. 2021, 73 (8), 1102–1115. doi:10.37863/umzh.v73i8.6755 (in Ukrainian))
  39. Stasyuk S.A. Best approximations and Kolmogorov and trigonometric widths of the classes \(B^{\Omega}_{p,\theta}\) of periodic functions of many variables. Ukrain. Math. J. 2004, 56 (11), 1849–1863. doi:10.1007/s11253-005-0155-1 (translation of Ukrain. Mat. Zh. 2004, 56 (11), 1557–1568. (in Ukrainian))
  40. Stasyuk S.A., Fedunyk O.V. Approximation characteristics of the classes \(B^{\Omega}_{p,\theta}\) of periodic functions of many variables. Ukrain. Math. J. 2006, 58 (5), 779–793. doi:10.1007/s11253-006-0101-x (translation of Ukrain. Mat. Zh. 2006, 58 (5), 692–704. (in Ukrainian))
  41. Stechkin S.B. On the order of the best approximations of continuous functions. Izv. Ross. Akad. Nauk Ser. Mat. 1951, 15, (3) 219–242. (in Russian)
  42. Temlyakov V.N. Approximation of Periodic Functions. Nova Science Publishers, Inc., New York, 1993.
  43. Temlyakov V.N. Estimates of the asymptotic characteristics of classes of functions with bounded mixed derivative or difference. Proc. Steklov Inst. Math. 1990, 189, 161–197. (translation of Tr. Mat. Inst. Steklova 1989, 189, 138–168. (in Russian))
  44. Temlyakov V.N. Multivariate approximation. Cambridge University Press, Cambridge, 2018.
  45. Tikhomirov V.M. Diameters of sets in function spaces and the theory of best approximations. Russian Math. Surveys 1960, 15 (3), 75–111. doi:10.1070/RM1960v015n03ABEH004093 (translation of Uspekhi Mat. Nauk 1960, 15 (3(93)), 81–120. (in Russian))
  46. Trigub R.M., Belinsky E.S. Fourier Analysis and Approximation of Functions. Kluwer Academic Publishers, Dordrecht, 2004.
  47. Yongsheng S., Heping W. Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness. Tr. Mat. Inst. Steklova 1997, 219, 356–377.