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This work is devoted to study the dissipativity property of dynamical systems on time scales and
relationship between the dissipativity of systems of dynamic equations on time scales and the corre-
sponding systems of ordinary differential equations. It is established that the dissipativity property
is preserved when transitioning from equations on time scales Tλ to the corresponding ordinary
differential equations and vice versa, provided that the graininess function µλ converges to zero
as λ → 0.
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Introduction

The theory of dynamic equations on time scales has been a rapidly developing area of
mathematics in recent years (see, for example, [2,3] and the references therein). Such equations
represent a generalization of difference equations (discrete with a constant step – Euler scale),
covering equations with a variable step, or take values from fractal sets [18,19]. These equations
are investigated in [12], where the concept of a derivative (∆-derivative) was introduced on any
closed subset in real axis. Such an approach unifies discrete and continuous analyses, as the
∆-derivative transitions to the classical derivative, when the time scale T = R, and in the case
of the Euler scale T = {kn : k ∈ Z}, it transitions to a difference ratio.

Special interest is drawn to the behavior of the solutions of dynamic equations that are de-
fined on a family of time scales Tλ, when the graininess function µλ goes to zero as λ → 0.
In this case, the intervals of the time scale [t0, t1] ∩ Tλ approach [t0, t1]. The question naturally
arises whether solutions of equations on time scales and the corresponding solutions of differ-
ential equations have the same properties. The question of preservation of the boundedness
property of solutions is investigated in the works [1, 14, 15]. We also note that the existence of
bounded solutions of dynamic equations in the case of Euler time scales has been studied, for
example, in the following works [10, 17].The issue of the relationship between the oscillations
of such solutions is studied in the works [6, 21]. Similar issues for optimal control problems
are considered in [4, 8, 16, 20]. The relationship between the existence of periodic solutions of

УДК 517.9
2020 Mathematics Subject Classification: 34N05, 34C10.

© Tsan V.B., Stanzhytskyi O.M., Kapustian O.A., 2024



428 Tsan V.B., Stanzhytskyi O.M., Kapustian O.A.

systems of dynamic equations on time scales and their corresponding systems of differential
equations is studied in article [22].

In this work, we investigate the dissipativity of systems of dynamic equations on time scales
and the relationship between the dissipativity of dynamic equation systems on the family of
time scales Tλ and their corresponding differential equation systems, under the condition that
the graininess function µλ → 0 as λ → 0.

This paper is organized as follows. In Section 2, we briefly introduce the basic concepts of
the time scale theory, and in Section 3, we provide the problem statement and formulate the
main results of the article. Section 4 is devoted to auxiliary propositions necessary for proving
the main theorems. The main results are proven in Section 5. Section 6 provides an illustration
of the main results using an example of a Liénard-type equation.

1 Some concepts of time scale theory

(1) Any nonempty closed subset of the real line is called a time scale T. For any subset A ⊂ R,
the corresponding subset of the time scale is defined as AT = A ∩ T.

(2) For each point t of the time scale Tλ, three functions characterizing the scale are defined.
The forward jump operator σ : T → T is such that σ(t) = inf{s ∈ T : s > t}; the backward
jump operator ρ : T → T is defined as ρ(t) = sup{s ∈ T : s < t}; and the graininess
function µ : T → [0, ∞) is such that µ(t) = σ(t)− t.

(3) According to the properties of the scale at points t ∈ T, the points of the scale are divided
into left-dense (LD) if ρ(t) = t; left-scattered (LS) if ρ(t) < t; right-dense (RD) if σ(t) = t;
and right-scattered (RS) if σ(t) > t. If the scale T has a right-scattered maximum M, then
Tk = T \ M is defined; otherwise, Tk = T.

(4) A function f : T → Rn is called ∆-differentiable at t ∈ Tk if the limit

f ∆(t) = lim
s→t

f (σ(t))− f (s)
σ(t)− s

exists in Rn. Then the corresponding value f ∆(t) is called the ∆-derivative at the point t.

(5) A function f : T → R is called rd-continuous if it is continuous at right-dense points of
the time scale T and has a finite limit at left-dense points of this scale.

(6) A function p : T → R is called regressive if 1 + µ(t) f (t) ̸= 0 for all t ∈ Tk.

(8) If p is regressive, then the generalized exponential function ep(t, x) is defined using the
expression

ep(t, s) = exp
(∫ t

s
ξµ(τ)(p(τ))∆τ

)
for s, t ∈ T,

where ξh(z) is a cylinder transformation. The cylinder transformation ξh : Ch → Zh is
defined as

ξh(z) =
1
h

Log(1 + zh),

where Log is the principal logarithm function.
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Theorem 1. If p, q are regressive, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

(iii) 1
ep(t,s)

= e⊖p(t, s);

(iv) ep(t, s) = 1
ep(s,t) = e⊖p(s, t);

(v) ep(t, s)ep(s, r) = ep(t, r).

Theorem 2. If p is regresive, a, b, c ∈ T, then

[ep(c, ·)]∆ = −p[ep(c, ·)]σ

and ∫ b

a
p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b).

2 Problem statement and main results
Let D be a domain in Rn. We consider the system of ordinary differential equations

dx
dt

= X(t, x) (1)

with t ∈ R, x ∈ D, and the corresponding system of dynamic equations

x∆
λ = X(t, xλ) (2)

on the family of time scales Tλ, where t ∈ Tλ, xλ : Tλ → Rn, and x∆
λ (t) is ∆-derivative of xλ(t)

on Tλ. We assume that inf Tλ = −∞, sup Tλ = ∞, λ ∈ Λ ⊂ R, and λ = 0 is a limit point of Λ.
Here and in the following, we will consider time scales Tλ with λ > 0 and the point t = 0
belongs to Tλ for all λ ∈ Λ.

We also assume that the function X(t, x) is defined for all t ≥ 0, x ∈ D, it is continuous
with respect to the variables t and x and has bounded partial derivatives with respect to t and
x in every bounded domain of {t ≥ 0} × D, i.e. for every M > 0 there exists L(M) such that

|X(t, x)|+
∣∣∣∣∂X(t, x)

∂t

∣∣∣∣+ ∥∥∥∥∂X(t, x)
∂x

∥∥∥∥ ≤ L(M), (3)

if t ≤ M and ∥x∥ ≤ M. Here | · | is Euclidean norm in Rn, ∥ · ∥ is a matrix norm induced by the
vector norm. From inequality (3) it follows that there exist locally integrable functions MR(t)
and BR(t) such that

|X(t, x)| ≤ MR, (4)

|X(t, x1)− X(t, x2)| ≤ BR|x2 − x1| (5)

for x, xi ∈ UR. Here and throughout, UR denotes the set of points x such that ∥x∥ ≤ R.
We set µλ := supt∈Tλ

µλ(t), where µλ(t) : Tλ → [0, ∞) is the graininess function. If µλ → 0
as λ → 0, then Tλ approaches the continuous time scale T0 = R, and the system (2) transforms
into the system (1). Therefore, it is natural to expect that under certain conditions, the dissi-
pativity of the differential equation system (1) implies the dissipativity of the corresponding
dynamic equation system (2) on the time scale Tλ.

Dissipativity of system (1) will be understood in the next sense.
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Definition 1 ([23]). System (1) is called dissipative with respect to t ≥ t0, if there exists R > 0
such that for all r > 0 there exists T = T(r, t0) for which the solution x(t; t0, x0) of system (1)
with initial conditions (t0, x0) satisfying

|x0| < r (6)

satisfies the inequality
∥x(t, t0, x0)∥ < R

for t ≥ t0 + T.

Definition 2 ([23]). System (1) is called uniformly dissipative in t0 if, in Definition 1, T is
independent of t0.

We define dissipativity for system (2) analogously.

Definition 3. System (2) is called dissipative with respect to t ∈ [0,+∞)Tλ
, if there exists

R(λ) > 0 such that for all r > 0 there exists T = T(r, t0, λ) for which the solution xλ(t, t0, x0)

of system (2) with initial conditions (t0, x0) satisfying

|x0| < r (7)

satisfies the inequality
∥xλ(t, t0, x0)∥ < R

for t ≥ t0 + T, t ∈ Tλ.

Definition 4. System (2) is called uniformly dissipative in t0 ∈ Tλ and λ ≤ λ0 if, in Defini-
tion 3, R and T are independent of t0 and λ.

We start with the conditions of dissipativity of the system of dynamic equations (2) in terms
of the Lyapunov function V(t, x).

Regarding all Lyapunov functions that we will consider further, we assume that Vλ(t, x) is
∆-absolutely continuous [9] with respect to t and uniformly continuous with respect to x in a
neighborhood of each point. Additionally, it satisfies a local Lipschitz condition with respect to
x for each 0 < λ ≤ λ0 in the domain {t ∈ [0, T]Tλ

} × UR with a Lipschitz constant depending
on R and T. This fact will be denoted as V ∈ C0.

Definition 5. The Lyapunov operator corresponding to system (2) will be denoted as d0/∆t,
defined by the relation

d0V(t, x)
∆t

= lim
t→t0+0,t∈Tλ

1
t − t0

[V(t, xλ(t, t0, x0))− V(t0, x0)] .

From [7] it follows the next comment.

Remark 1. If V(t, x) ∈ C0 then for almost all t the Lyapunov operator will coincide with the

∆-derivative of the function V in system (2), which denoted as
∆
V.

Then the following theorem holds.
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Theorem 3. If system (2) on time scale Tλ, λ ≥ 0, has a nonnegative Lyapunov function
V(t, x) ∈ C0, defined for t ≥ t0, t ∈ Tλ, x ∈ D ⊂ Rn, with the following properties:

1)
inf

t∈[t0,∞)Tλ
,∥x∥≥ρ

V(t, x) = Vρ(λ) → ∞, ρ → ∞, (8)

2) for x ∈ ŪR0 = {∥x∥ ≥ R0, t ≥ t0} there exists C = C(λ) > 0 such that
∆
V(t, x) ≤ −C(λ)V(t, x), t ∈ Tλ, (9)

and for x ∈ UR0 functions V and
∆
V(t, x) are bounded above,

then system (2) is dissipative.

Remark 2. A similar result to Theorem 3, under different conditions and using a different
method, was obtained in [1, Theorem 3.4].

Remark 3. If in the conditions of Theorem 3 V(t, x) and C do not depend on λ and relation (8)
holds uniformly over λ ≤ λ0, then system (2) is uniformly dissipative.

We obtain an inverse result.

Theorem 4. If there exists λ0 > 0 such that system (2) is dissipative for every λ ≤ λ0 and
conditions (4), (5) are satisfied, then for each system (2) there exists a non-negative function V
satisfying conditions (8), (9) for λ < λ0.

Studying the dissipativity of the system of dynamic equations, we also investigate the con-
ditions under which the dissipativity of the system of dynamic equations implies the existence
of a similar property in the corresponding system of differential equations, as well as the in-
verse result.

Theorem 5. Let X(t, x) satisfies condition (3) and there exists λ0 such that for all λ ≤ λ0 the
system of dynamic equations (2) is uniformly dissipative with respect to t0 ∈ Tλ and λ. Then
system (1) is uniformly dissipative with respect to t0 for t0 > 0.

Theorem 6. Let X(t, x) satisfies condition (3) and system (1) is uniformly dissipative with
respect to t0 for t0 > 0. Then there exists λ0 such that the dynamic system (2) is uniformly
dissipative with respect to t0 and λ for all λ ≤ λ0.

3 Auxiliary results
In this section, we present several auxiliary results necessary for proving the main theo-

rems. The following lemma will be applied to study the dissipativity conditions of system (2).

Lemma 1. Let t0 ∈ Tλ, yλ : Tλ → R. If yλ(t) is a function defined for t ≥ t0, whose
∆-derivative y∆

λ satisfies the inequality

y∆
λ < A(t)yλ + B(t) (10)

for almost all t ≥ t0, where A(t), B(t) ∈ Crd(T) and 1 + µλ(t)A(t) > 0 for all t ∈ Tλ, then for
t ≥ t0, the inequality

yλ(t) < yλ(t0)eA(t, t0) +
∫ t

t0
eA(t, σ(τ))B(τ)∆τ

holds.
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Proof. Inequality (10) can be equivalently rewritten as

yλ(t)∆ < A(t)
(
yλ(σ(t))− µλ(t)y∆

λ(t)
)
+ B(t).

Thus
y∆(t)(1 + µλ(t)A(t)) < A(t)yλ(σ(t)) + B(t).

From the statement of the lemma we get 1 + µλ(t)A(t) ≥ 0, then

y∆
λ(t) <

A(t)
1 + µλ(t)A(t)

yλ(σ(t)) +
B(t)

1 + µλ(t)A(t)
.

Since −A(t)
1+µλ(t)A(t) = (⊖A)(t), we have

y∆
λ(t) < −(⊖A)(t)yλ(σ(t)) +

B(t)
1 + µλ(t)A(t)

.

Multiplying by the generalized exponential function both sides of e⊖A(t, t0) we obtain

e⊖A(t, t0)y∆
λ(t) < −e⊖A(t, t0)(⊖A)(t)yλ(σ(t)) + e⊖A(t, t0)

B(t)
1 + µλ(t)A(t)

.

Then we get

(e⊖A(·, t0)yλ)
∆(t) = e⊖A(t, t0)y∆

λ(t) + e⊖A(t, t0)(⊖A)(t)yλ(σ(t)) < e⊖A(t, t0)
B(t)

1 + µλ(t)A(t)
.

Integrating both sides of this last inequality from t0 to t, we obtain

e⊖A(t, t0)yλ(t)− e⊖A(t0, t0)yλ(t0) <
∫ t

t0
e⊖A(τ, t0)

B(τ)
1 + µλ(τ)A(τ)

∆τ.

Using Theorem 1 (i), we have e⊖A(t0, t0) ≡ 1 and it can be shown that

e⊖A(t, t0)yλ(t) < yλ(t0) +
∫ t

t0
e⊖A(τ, t0)

B(τ)
1 + µλ(τ)A(τ)

∆τ,

yλ(t) <
1

e⊖A(t, t0)
yλ(t0) +

∫ t

t0

e⊖A(τ, t0)

e⊖A(t, t0)

B(τ)
1 + µλ(τ)A(τ)

∆τ.

Therefore, by the properties of exponential function (Theorem 1 (v) ), we get

yλ(t) <
1

e⊖A(t, t0)
yλ(t0) +

∫ t

t0
e⊖A(t, τ)

B(τ)
1 + µλ(τ)A(τ)

∆τ.

Since 1
e⊖A(t,t0)

= eA(t, t0) and e⊖A(t,τ)
1+µλ(τ)A(τ)

= eA(t,τ)
eA(σ(τ),τ)

= eA(t, σ(τ)) (Theorem 1 (ii )–(iv)), we
get the desired result

yλ(t) < eA(t, t0)yλ(t0) +
∫ t

t0
eA(t, σ(τ))B(τ)∆τ.
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Lemma 2. Assume that V : T × Rn → R, V ∈ C1(T × Rn) and x : [0, T]T → Rn is delta
differentiable on Tk. Let z : [0, T]T → R, z(·) = V(·, x(·)), then z is delta differentiable at t and

z∆(t0) =
∂V
∆t

(t0, x0) + F(σ(t0), x) · x∆(t0),

where F(σ(t0), x) = (F1(σ(t0), x), . . . , Fn(σ(t0), x)) and

Fi(σ(t0), x) =
∫ 1

0

∂V
∂xi

(σ(t0), x1(σ(t0)), . . . , xi−1(σ(t0)), xi

+ hµ(t0)x∆
i (t0), xi+1(t0), . . . , xn(t0))dh.

Proof. Fix t0 ∈ [0, T]k. First we consider the case, when t0 is right-dense. In this case σ(t0) = t0,
x is delta differentiable and continuous at t0, and

lim
(t,x)→(t0,x0)

α1((t0, x0), (t, x)) = lim
(t,x)→(t0,x0)

βij((t0, x0), (t, x)) = 0.

Using the definition of completely delta differentiable at point function [5, Def. 6.97], we
have

z∆(t0) = lim
t→t0

V(t, x)− V(t0, x0)

t − t0

= lim
t→t0

A(t − t0) + ∑n
i=1 Bi(xi(t)− xi(t0)) + α1(t − t0) + ∑n

i=1 βi1((xi(t)− xi(t0)))

t − t0

=
∂V
∆t

(t0, x0) +
n

∑
i=1

∂V
∂xi

(t0, x0) · x∆
i (t0).

Let Fi(t, x) = ∂V
∂xi

(t, x) and F(t, x) = (F1(t, x), F2(t, x), . . . , Fn(t, x)), then

z∆(t0) =
∂V
∆t

(t0, x0) + F(t0, x) · x∆(t0).

Next consider the other case, when t0 is right-scattered. Let x(σ(t0)) = x(σ0), then we have
x(σ0)− x(t0) = µ(t0)x∆(t0) and

z∆(t0) =
V(σ0, x(σ0))− V(t0, x(t0))

µ(t0)

=
n

∑
i=1

V(σ0, x1(σ0), . . . , xi(σ0), xi+1(t0), . . . , xn(t0))

xi(σ0)− xi(t0)

− V(σ0, x1(σ0), . . . , xi−1(σ0), xi(t0), . . . , xn(t0))

xi(σ0)− xi(t0)
x∆

i (t0) +
V(σ0, x(t0))− V(t0, x(t0))

µ(t0)
.

Since V ∈ C1([0, T]× Rn), by applying the mean value theorem, we obtain

Fi(σ0, x) =
V(σ0, x1(σ0), . . . , xi(σ0), xi+1(t0), . . . , xn(t0))

xi(σ0)− xi(t0)

− V(σ0, x1(σ0), . . . , xi−1(σ0), xi(t0), . . . , xn(t0))

xi(σ0)− xi(t0)

=
∫ 1

0

∂V
∂xi

(σ0, x1(σ0), . . . , xi−1(σ0), xi + h(xi(σ0)− xi(t0)), xi+1(t0), . . . , xn(t0))dh

=
∫ 1

0

∂V
∂xi

(σ0, x1(σ0), . . . , xi−1(σ0), xi + hµ(t0)x∆
i (t0), xi+1(t0), . . . , xn(t0))dh.
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Therefore,

z∆(t0) =
∂V
∆t

(t0, x0) +
n

∑
i=1

Fi(σ0, x)x∆
i (t0).

We set F(t, x) := (F1(t, x), F2(t, x), . . . , Fn(t, x)) to obtain

z∆(t0) =
∂V
∆t

(t0, x0) + F(σ0, x) · x∆(t0).

Remark 4. Given system (2), we consider the function
∆
V(t, x) defined as

∆
V(t, x) =

∂V
∆t

(t, x) +
n

∑
i=1

Fi(σ(t), xλ)Xi(t, xλ) =
∂V
∆t

(t, x) + F(σ(t), xλ) · X(t, xλ).

The function
∆
V(t, x) represents the ∆-derivative of the function V(t, x) according to system (2).

Lemma 3 ([15]). Let t0 ∈ Tλ, t0 + T ∈ Tλ, xλ and x are the solutions of (2) and (1) on [t0, t0 + T]
and on [t0, t0 + T]Tλ

, respectively. Then if the initial conditions x(t0) = xλ(t0) = x0, x0 ∈ D,
are satisfied, then

|x(t)− xλ(t)| ≤ µ(λ)K(T)

holds, where µ(λ) = supt∈[t0,t0+T]Tλ
µλ(t) and K(T) = eC(T+1)

(
C + C2T

4

)
+ 3C is constant.

4 Proofs of main results
Proof of Theorem 3. Indeed, according to the condition (9) we have

∆
V(t, x) ≤ −CV(t, x) for t ≥ t0, ∥x∥ ≥ R0,

and if ∥x∥ < R0, there exists positive constant C1 > 0 such that
∆
V(t, x) ≤ C1, V(t, x) < C1. (11)

Thus, from (9) and (11) we have the next inequality
∆
V(t, x) ≤ −CV(t, x) + C2 for all t ≥ t0 and x ∈ Rn, (12)

where C2 > 0 is a certain constant.
Now using Lemma 1 to inequality (12) and Theorem 2, we obtain

V(t, x) ≤ V(t0, x0) · e−C(t, t0) +
∫ t

t0
C2e−C(t, σ(τ))∆τ

= V(t0, x0) · e−C(t, t0) +
C2
C

(1 − e−C(t, t0))

≤ V(t0, x0) · e−C(t, t0) +
C2
C

≤ e−C(t, t0) sup
|x0|<r

V(t0, x0) +
C2
C

.

Hence, there exists T = T(t0, r, λ) such that for t ≥ t0 + T the inquality

V(t, x) ≤ C3

holds. From here according to the condition (8), we get dissipativity of system (2) for
all λ > 0.
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Proof of Theorem 4. From the dissipativity of (2) it follows that for any r > 0 there exists
T = T(r, t0, λ) > 0 such that the solution xλ of (2) with initial conditions (t0, x0), t0 ∈ [0, T0]Tλ

and x0 satisfying |x0| < r for t ∈ [t0 + T;+∞)Tλ
is contained in the sphere of radius R,

i.e. |xλ(t; t0, x0)| < R.
Let us consider the next function

G(ζ) =

{
ζ − R, if ζ ≥ R;

0, if 0 ≤ ζ < R.

This function is continuous and takes only non-negative values. Moreover, it is defined for
ζ ≥ 0, G(ζ) → +∞ as ζ → +∞ and

|G(ζ)− G(ζ ′)| ≤ |ζ − ζ ′|. (13)

We define V(t, x) as follows

V(t, x) = sup
τ≥0

{
G(∥xλ(tτ; t, x)∥) · eτ

}
,

where tτ = σ(t + τ) = inf{s ∈ Tλ : s ≥ t + τ}.
Note that if τ > T then, according to the dissipative nature of system (2), the solution xλ

enters a ball of radius R, implying that G(∥x∥) = 0. Hence,

V(t, x) = sup
τ∈[0,T]

{
G(∥xλ(tτ; t, x)∥) · eτ

}
.

From the definition of G, we get G(∥x∥) ≤ V(t, x). Therefore, V(t, x) satisfies the condi-
tion (8).

Now let us show that that V(t, x) satisfies the local Lipschitz condition with respect to
variables t and x. Suppose (t, x) and (t̂, x̂) such that t, t̂ ∈ [0, T0]Tλ

, t < t̂, and x, x̂ are included
in a ball of radius r.

Due to continuous dependence of solution of system (2) on initial data on a finite interval
of time scale [13, Theorem 3.2] we can guarantee that for all τ ∈ [0, T] for any initial conditions
t, t̂ ∈ [0, T0]Tλ

and x, x̂ ∈ Ur solutions xλ(tτ; t, x) and xλ(t̂τ; t̂, x̂) are included in a ball of the
fixed radius r. Then there exists Nr such that ∥xλ(tτ; t, x)∥ ≤ Nr, ∥xλ(t̂τ; t̂, x̂)∥ ≤ Nr. Hence,
by (13), we have

V(t, x)− V(t̂, x̂) = sup
τ∈[0,T]

{
G(∥xλ(tτ; t, x)∥)eτ

}
− sup

τ∈[0,T]

{
G(∥xλ(t̂τ; t̂, x̂)∥)eτ

}
≤ sup

τ∈[0,T]

{
|G(∥xλ(tτ; t, x)∥)− G(∥xλ(t̂τ; t̂, x̂)∥)|eτ

}
≤ sup

τ∈[0,T]

{
∥xλ(tτ; t, x)− xλ(t̂τ; t̂, x̂)∥eτ

}
.

(14)

Let us consider in more detail the difference

∥xλ(tτ; t, x)− xλ(t̂τ; t̂, x̂)∥,

where xλ(tτ; t, x) is the solution of (2) with initial conditions (t, x). Then

∥xλ(tτ; t, x)− xλ(t̂τ; t̂, x̂)∥ ≤ ∥xλ(tτ; t, x)− xλ(t̂τ; t, x)∥+ ∥xλ(t̂τ; t, x)− xλ(t̂τ; t̂, x̂)∥. (15)
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Let us estimate first term in (15). Since the solutions xλ(tτ; t, x) and xλ(t̂τ; t, x) can be rep-
resented as

xλ(tτ; t, x) = x +
∫ tτ

t
X(s, xλ(s; t, x))∆s,

xλ(t̂τ; t, x) = x +
∫ t̂τ

t
X(s, xλ(s; t, x))∆s,

we obtain the following estimate

∥xλ(tτ; t, x)−xλ(t̂τ; t, x)∥

≤
∥∥∥∥x +

∫ tτ

t
X(s, xλ(s; t, x))∆s − x −

∫ t̂τ

t
X(s, xλ(s; t, x))∆s

∥∥∥∥
≤

∥∥∥∥ ∫ tτ

t
X(s, xλ(s; t, x))∆s −

∫ tτ

t
X(s, xλ(s; t, x))∆s −

∫ t̂τ

tτ

X(s, xλ(s; t, x))∆s
∥∥∥∥

≤
∫ t̂τ

tτ

∥X(s, xλ(s; t, x))∥∆s, t ≤ tτ ≤ t̂τ.

Let us denote
max

t∈[0,T]Tλ
,∥x∥≤Nr

∥X(t, x)∥ = Mr, (16)

then

∥xλ(tτ; t, x)− xλ(t̂τ; t, x)∥ ≤
∫ t̂τ

tτ

Mr∆s ≤ Mr|t̂τ − tτ| ≤ Mr|t̂ − t|. (17)

Now estimate the second term in (15), namely ∥xλ(t̂τ; t, x) − xλ(t̂τ; t̂, x̂)∥. Let us denote
xλ(t̂; t, x) := x∗, then we get

∥xλ(t̂τ; t, x)− xλ(t̂τ; t̂, x̂)∥ = ∥xλ(t̂τ; t̂, x∗)− xλ(t̂τ; t̂, x̂)∥.

Since xλ(t̂τ; t̂, x∗) and xλ(t̂τ; t̂, x̂) we rewrite as

xλ(t̂τ; t̂, x∗) = x∗ +
∫ t̂τ

t̂
X(s, xλ(s; t̂, x∗))∆s,

xλ(t̂τ; t̂, x̂) = x̂ +
∫ t̂τ

t̂
X(s, xλ(s; t̂, x̂))∆s,

then

∥xλ(t̂τ; t̂, x∗)− xλ(t̂τ; t̂, x̂)∥

≤
∥∥∥∥x∗ +

∫ t̂τ

t̂
X(s, xλ(s; t̂, x∗))∆s − x̂ −

∫ t̂τ

t̂
X(s, xλ(s; t̂, x̂))∆s

∥∥∥∥
≤ ∥x∗ − x̂∥+

∫ t̂τ

t̂
∥X(s, xλ(s; t̂, x∗))− X(s, xλ(s; t̂, x̂))∥∆s.

Since X(t, x) is Lipschitzian with constant K with respect to x, we have

∥xλ(t̂τ; t̂, x∗)− xλ(t̂τ; t̂, x̂)∥ ≤ ∥x∗ − x̂∥+ K
∫ t̂τ

t̂
∥xλ(s; t̂, x∗)− xλ(s; t̂, x̂)∥∆s.
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Hence, using an analogue of the Gronwall inequality for time scales [2, Theorem 6.4] for
s ∈ [t̂; t̂τ]Tλ

and Lemma 1 [11], we obtain

∥xλ(t̂τ; t̂, x∗)− xλ(t̂τ; t̂, x̂)∥ ≤ eK(t̂τ, t̂)∥x∗ − x̂∥

≤ eK(t̂τ−t̂)∥x∗ − x̂∥ ≤ eK(t̂τ−t̂) (∥x∗ − x∥+ ∥x − x̂∥) .
(18)

Considering x∗ := xλ(t̂; t, x), we have ∥xλ(t̂; t, x) − x∥ ≤
∫ t̂

t ∥X(s, xλ(s; t, x))∥∆s. Therefore,
by (16), for tτ ∈ [0, t̂τ] we obtain

∥x∗ − x∥ = ∥xλ(t̂; t, x)− x∥ ≤
∫ t̂

t
Mr∆s ≤ Mr|t̂ − t|.

Substituting the last equality into (18), we get

∥xλ(t̂τ; t̂, x∗)− xλ(t̂τ; t̂, x̂)∥ ≤ eK(t̂τ−t̂) (Mr|t̂ − t|+ ∥x − x̂∥
)

. (19)

Thus, from (15), (17) and (19), we obtain

∥xλ(tτ; t, x)− xλ(t̂τ; t̂, x̂)∥ ≤ Mr|t̂ − t|+ eK(t̂τ−t̂) (Mr|t̂ − t|+ ∥x − x̂∥
)

≤ Mr(eK(t̂τ−tτ) + 1)|t̂ − t|+ eK(t̂τ−t̂)∥x̂ − x∥.

For sufficiently small µλ > 0 the point t̂τ is on the interval [t̂ + τ; t̂ + τ + 1], so we have
t̂τ − tτ ≤ t̂ − t + 1. Hence, from the condition (14), taking into account the dissipativity of
system (2) and inequality (4), we have

V(t, x)− V(t̂, x̂) ≤ sup
τ∈[0,T]

{(
MR(eK(t̂τ−t̂) + 1)|t̂ − t|+ eK(t̂τ−t̂)∥x̂ − x∥

)
eτ
}

≤ MR(eK(T+1)+T + 1)|t̂ − t|+ eK(T+1)+T∥x̂ − x∥.
(20)

Similarly, performing transformations as in (14)–(20), we can obtain the estimate

V(t̂, x̂)− V(t, x) ≤ sup
τ∈[0,T]

{(
MR(eK(t̂τ−t̂) + 1)|t − t̂|+ eK(t̂τ−t̂)∥x − x̂∥

)
eτ
}

≤ MR(eK(T+1)+T + 1)|t − t̂|+ eK(T+1)+T∥x − x̂∥.

Therefore, we have

V(t, x)− V(t̂, x̂) ≥ −MR(eK(T+1)+T + 1)|t − t̂|+ eK(T+1)+T∥x − x̂∥. (21)

Thus, from (20) and (21), we obtain

|V(t, x)− V(t̂, x̂)| ≥ MR(eK(T+1)+T + 1)|t − t̂|+ eK(T+1)+T∥x − x̂∥.

So, we conclude that the function V(t, x) is Lipschitzian with respect to t and x.
Next we will show that condition (9) holds. For each point t ∈ Tλ there are two possible

cases: when the point t is right-scattered, i.e. µλ(t) > 0, and when the point t is right-dense,
i.e. µλ(t) = 0. Let us denote

Vτ(t, x) = G(∥xλ(σ(t + τ); t, x)∥) · eτ.
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Then for µλ(t) ≥ 0 we obtain

Vτ(t + µλ(t), x(t + µλ(t); t, x))
= G(∥xλ(σ(t + µλ(t) + τ); t + µλ(t), x(t + µλ(t); t, x))∥)eτ

= G(∥xλ(σ(t + µλ(t) + τ); t + µλ(t), x(t + µλ(t); t, x))∥)eτ+µλ(t)e−µλ(t).

(22)

From the uniqueness of solutions of (2) on time scales [7, Proposition 4], we get

xλ(σ(t + µλ(t) + τ); t + µλ(t), x(t + µλ(t); t, x)) = xλ(σ(t + µλ(t) + τ); t, x). (23)

Substituting (23) into (22) and denoting τ′ = τ + µλ(t), we obtain

Vτ(t + µλ(t), x(t + µλ(t); t, x)) = G(∥xλ(σ(t + τ′); t, x))∥)eτ′
e−µλ(t) = Vτ′(t, x)e−µλ(t).

Note that if τ ∈ [0, T] then τ′ ∈ [µλ(t), T +µλ(t)], so t+ τ′ ∈ [t+µλ(t), t+ T +µλ(t)]. Since
from the dissipativity ∥xλ(t + τ′; t, x)∥ < R when t + τ′ ≥ t + T, then G(∥xλ(t + τ′; t, x)∥) = 0
when t + τ′ ≥ t + T. Hence,

V(t + µλ(t), x(t + µλ(t); t, x)) = sup
τ∈[0,T]

Vτ(t + µλ(t), x(t + µλ(t); t, x))

= sup
τ′∈[µλ(t),T+µλ(t)]

Vτ′(t, x)e−µλ(t)

= sup
τ′∈[µλ(t),T]

Vτ′(t, x)e−µλ(t)

≤ sup
τ′∈[0,T]

Vτ′(t, x)e−µλ(t),

that is,
V(t + µλ(t), x(t + µλ(t); t, x)) ≤ V(t, x)e−µλ . (24)

Let us consider the Lyapunov operator corresponding to system (2). Since, V(t, x) satisfies
a Lipschitz condition with respect to t and x, it is absolutely continuous with respect to t and
x, and therefore, for almost all t and x, it has derivatives (∆-derivative with respect to t and
ordinary derivative with respect to x). By (24), for a right-scattered point t, we obtain

d0V(t, x)
∆t

=
1

µλ(t)
[V(t + µλ(t), x(t + µλ(t, t, x))− V(t, x)]

≤ 1
µλ(t)

[
V(t, x)e−µλ(t) − V(t, x)

]
= V(t, x) · e−µλ(t) − 1

µλ(t)
.

Since limµλ(t)→0
e−µλ(t)−1

µλ(t)
= −1, from Remark 1 it follows that

∆
V(t, x) ≤ −C(µλ)V(t, x),

where C(µλ) =
1−e−µλ(t)

µλ(t)
> 0.

If t is right-dense, i.e. µλ(t) = 0, then there exists a sequence {hn}, hn ∈ Tλ, such that
hn → t + 0. Let us consider

Vτ(t + hn, x(t + hn; t, x)) = G(∥x(t + hn + τ; t + hn, x(t + hn; t, x)∥)eτ

= G(∥x(t + hn + τ; t + hn, x(t + hn; t, x)∥)eτ+hn e−hn .
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By the uniqueness of the solution of (2), x(t+ hn + τ; t+ hn, x(t+ hn; t, x)) = x(t+ hn + τ; t, x).
Then replacing τ + hn = τn, we obtain

V(t + hn, x(t + hn; t, x)) = sup
τ∈[0,T]

Vτ(t + hn, x(t + hn; t, x))

= sup
τn∈[hn,T+hn]

Vτn e−hn ≤ sup
τn∈[0,T]

Vτn(t, x)e−hn ≤ V(t, x)e−hn .

Subtracting V(t, x) from both sides and dividing by hn > 0, we get

V(t + hn, x(t + hn; t, x))− V(t, x)
hn

≤ V(t, x)
e−hn − 1

hn
.

Hence, by the definition of the ∆-derivative at dense points as hn → 0 we have

V∆(t, x) ≤ −V(t, x).

Therefore, we have established that condition (9) holds.

Proof of Theorem 5. Let choose an arbitrary r > 0. Without loss of generality, it can be assumed
that t0 = 0 ∈ Tλ. From the conditions of Theorem 5, if xλ(t; 0, x0) is a solution of (2) with
initial conditions (0, x0), where |x0| < r, then for all λ ≤ λ0 there exists T̃ = T̃(r) such that the
following inequality

|xλ(t, 0, x0)| < R

holds for t ∈ [T̃,+∞)Tλ
.

By the continuous dependence of solution of the system (2) on initial data on a finite inter-
val of time scale [13, Theorem 3.2] it follows that there exists M > 0 such that |xλ(t, 0, x0)| < M
for all t ∈ Tλ, t ≤ T̃ and |x0| ≤ r. Thus, condition (3) holds for t ∈ [0, T̃]Tλ

and ∥x∥ ≤ M.
Let x be a solution of system (1) such that x(0) = xλ(0) = x0 at the initial point t0 = 0. Let

us choose T = inf{s ∈ Tλ|s ≥ T̃}. Since T ≥ T̃, then the inequality |xλ(T, 0, x0)| < R holds
for it. Because of Lemma 3 concerning the proximity estimation of solutions of the differential
equation system and the corresponding system of dynamic equations on time scales with the
same initial conditions, for t ∈ [0, T] the inequality

|x(t, 0, x0)− xλ(t, 0, x0)| ≤ µλK(T) → 0

holds as λ → 0.
Note that, since µλ → 0 as λ → 0, then always we can choose λ1 ≤ λ0 such that µλK(T) < 1

for all λ ≤ λ1. Altogether we have

|x(T, 0, x0)| ≤ |x(T, 0, x0)− xλ(T, 0, x0)|+ |xλ(T, 0, x0)| ≤ 1 + R. (25)

Let yλ(t) be a solution of (2) such that x(T, 0, x0) = yλ(T). Since system (2) is uniformly
dissipative with respect to t0 and λ, then by putting r = R + 1 in inequality (7), we obtain that
there exists T1 = T1(R + 1) such that from the inequality |yλ(t1)| < R + 1 it follows that

|yλ(t, T, x(T, 0, x0))| < R for t ∈ [T + T1;+∞)Tλ
.

Let t1 = inf{s ∈ Tλ : s ≥ T + T1}. Then |yλ(t1, T, x(T, 0, x0))| < R. As earlier, we choose
λ2 ≤ λ1 such that for all λ ≤ λ2 the point t1 is in the interval [T + T1, T + T1 + 1]Tλ

and the
inequality |x(t, T, x(T, 0, x0))− yλ(t, T, x(T, 0, x0))| ≤ µλK(t1) < 1 holds for t ∈ [T, t1].
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Similarly to (25), we obtain |x(t1, T, x(T, 0, x0))| < R + 1. By the uniqueness of the solu-
tion of system (1), we have x(t, T, x(T, 0, x0)) = x(t, 0, x0), from which and from the uniform
dissipativity of system (2) in t0, we obtain

|x(t1, 0, x0)| < R + 1,

where t1 ∈ [T + T1, T + T1 + 1].
Continuing this process, for any k ∈ N we have

|x(tk, 0, x0)| < R + 1,

where tk is the smallest point in the interval [T + kT1, T + kT1 + 1]Tλ
.

Since x(t, t0, x0) continuously depends on the initial data, the solution of (1) also is in a
fixed ball of radius R1 ≥ R on the interval (tk, tk+1). Therefore, according to Definitions 1, 2
for R = R1, system (1) is uniformly dissipative with respect to t0 > 0.

Proof of Theorem 6. Let us choose an arbitrary r > 0. Without loss of generality, it can be
assumed that t0 = 0. From the conditions of Theorem 6, if x(t, 0, x0) is a solution of (1) with
initial conditions (0, x0), where |x0| < r, then there exists T̃ = T̃(r) such that the following
inequality

|x(t, 0, x0)| < R

holds for t ∈ [T̃,+∞).
By the continuous dependence of the solution of system (1) on initial data on a finite in-

terval it follows that there exists M > 0 such that |x(t, 0, x0)| < M for all t ∈ R, t ≤ T̃ and
|x0| ≤ r. Thus, the condition (3) holds for t ∈ [0, T̃] and ∥x∥ ≤ M.

Let xλ be a solution of system (2) such that xλ(0) = x(0) = x0 at the initial point
t0 = 0 ∈ Tλ.

Let us choose T = inf{s ∈ Tλ : s ≥ T̃}. Since T ≥ T̃, then the inequality |xλ(T, 0, x0)| < R
holds for it. Because of Lemma 3 concerning the proximity estimation of solutions of the dif-
ferential equation system and the corresponding system of dynamic equations on time scales
with the same initial conditions, for t ∈ [0, T]Tλ

the inequality

|xλ(t, 0, x0)− x(t, 0, x0)| ≤ µλK(T) → 0 as λ → 0

holds.
Note that, since µλ → 0 as λ → 0, then always we can choose λ1 ≤ λ0 such that µλK(T) < 1

for all λ ≤ λ1. At the same time, we have

|xλ(T, 0, x0)| ≤ |xλ(T, 0, x0)− x(T, 0, x0)|+ |x(T, 0, x0)| ≤ 1 + R. (26)

Let y(t) be a solution of (1) such that xλ(T, 0, x0) = y(T). Since system (1) is uniformly
dissipative in t0 then by putting r = R + 1 in inequality (6), we obtain that there exists
T1 = T1(R + 1) such that from the inequality |y(T)| < R + 1 it follows that

|y(t, T, xλ(T, 0, x0))| < R for t ≥ T + T1.
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Let t1 = inf{s ∈ Tλ : s ≥ T + T1}. Then

|y(t1, T, xλ(T, 0, x0))| < R.

As earlier, we choose λ2 ≤ λ1 such that for all λ ≤ λ2 the point t1 is in the interval
[T + T1, T + T1 + 1]Tλ

and the inequality

|xλ(t, T, x(T, 0, x0))− y(t, T, x(T, 0, x0))| ≤ µλK(t1) < 1

holds for t ∈ [T, t1]Tλ
. Similarly to (26), we have |xλ(t1, T, x(T, 0, x0))| < R + 1. By the unique-

ness of the solution of system (2) on initial data on a finite interval of time scale [13, Theo-
rem 3.2], we obtain xλ(t, T, x(T, 0, x0)) = xλ(t, 0, x0). From here, we get

|xλ(t1, 0, x0)| < R + 1,

where t1 ∈ [T + T1, T + T1 + 1].
Continuing this process, for any natural number k, we have

|xλ(tk, 0, x0)| < R + 1,

where tk ∈ [T + kT1, T + kT1 + 1].
Since xλ(t, t0, x0) continuously depends on initial data on a finite interval of time scale

[13, Theorem 3.2], the solution of (2) also is in a fixed ball of radius R1 ≥ R on the interval
[tk, tk+1]Tλ

. Therefore, according to Definitions 3, 4 for R = R1, (2) is uniformly dissipative
with respect to t0 and λ.

5 Example
Let us illustrate the results of our theorems to the Liénard-type equation.
We consider the differential equation

x′′ + (cos x + 2)x′ + x = 0. (27)

To establish the dissipativity of this equation, we rewrite it in the form of a system{
x′ = y,
y′ = −(cos x + 2)y − x.

(28)

Let

F(x) =
∫ x

0
cos t + 2 dt = sin x + 2x, G(x) =

∫ x

0
t dt =

x2

2
and

W(x, y) = (F(x)− 2x)y + G(x) +
∫ x

0
(cos t + 2)(F(t)− 2t) dt + 1 +

y2

2

= y sin x +
x2

2
+

∫ x

0
(cos t + 2) sin t dt + 1 +

y2

2

= y sin x +
x2

2
+ (5 + cos x) sin2 x

2
+ 1 +

y2

2

=
1
2

y2 + y sin x + (5 + cos x) sin2 x
2
+ 1,
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then we set a Lyapunov function V(t, x) such that

V(t, x) =

{
(W(x, y))α − C, for (W(x, y))α > C,
0, for (W(x, y))α ≤ C.

We consider W as a quadratic form in terms of y. Given that 0 < 1 ≤ cos x + 2 ≤ 3, we
obtain W → ∞ as r =

√
x2 + y2 → ∞. We can choose α > 0 such that V(x, y) ∈ C0. Using the

equality
d0W

dt
= −(2y2 + x sin(x)),

we get that the condition
d0V
dt

≤ −CV (29)

is satisfied in the region r > r0. Hence, it follows that for an appropriate C the inequality
(29) holds for V(x, y) everywhere. Consequently, the dissipativity of system (28) follows from
the dissipativity conditions of the system of differential equations in terms of the Lyapunov
function [23, Theorem 11].

Let us construct a solution to system (28) with initial conditions x0 = x(0) = 2,
y0 = y(0) = 0 and draw it in Figure 1.

Figure 1. The solution of system (28) on the interval [0, 50]

Let us consider the corresponding dynamic equation

x∆∆
λ + (cos xλ + 2)x∆

λ + xλ = 0 (30)

on the set of scales Tλwhere µλ = supTλ
µλ(t).
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The time scale is constructed in such a way that continuous intervals alternate with
discrete ones (see Figure 2), and the density of the scale is regulated by the multiplier λ so that
as λ → 0, µλ → 0.

Figure 2. Segment of time scale [0, 10]Tλ

Let us also rewrite dynamic equation (30) in the form of a system

{
x∆

λ = yλ,

y∆
λ = −(e−x2

λ + 1)yλ − xλ.
(31)

(a) xλ(t) (b) yλ(t)

Figure 3. Plot of solutions for λ = 0.65
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(a) xλ(t) (b) yλ(t)

Figure 4. Plot of solutions for λ = 0.6

(a) xλ(t) (b) yλ(t)

Figure 5. Plot of solutions for λ = 0.45

(a) xλ(t) (b) yλ(t)

Figure 6. Plot of solutions for λ = 0.3
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(a) xλ(t) (b) yλ(t)

Figure 7. Plot of solutions for λ = 0.1

(a) xλ(t) (b) yλ(t)

Figure 8. Plot of solutions for λ = 0.05

And let us constuct its solution on the interval [0, 50]Tλ
for different values of λ. So, for

λ = 0.65, 0.6, 0, 45, 0.3, 0.1, 0.05, we obtain Figures 3, 4, 5, 6, 7 and 8, respectively. We see that,
as λ decreases, the solutions of the dynamic system (31) approach solution of the differential
equation (27) and exhibit dissipative behavior.
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Цань В.Б., Станжицький О.М., Капустян О.А. Дисипативнiсть динамiчних систем на часових
шкалах та зв’язок мiж дисипативними диференцiальни та динамiчними системами // Карпат-
ськi матем. публ. — 2024. — Т.16, №2. — C. 427–447.

Робота присвячена дослiдженню властивостi дисипативностi динамiчних систем на часо-
вих шкалах та вiдповiдних звичайних диференцiальних рiвнянь. Встановлено, що властивiсть
дисипативностi зберiгається при переходi вiд рiвнянь на часових шкалах Tλ до вiдповiдних
звичайних диференцiальних рiвнянь та навпаки, коли функцiя зернистостi µλ прямує до ну-
ля при λ → 0.

Ключовi слова i фрази: дисипативнiсть, часова шкала, функцiя зернистостi, функцiя Ляпу-
нова, обмежений розв’язок.


