References
- Antonova T., Dmytryshyn R., Goran V. On the analytic continuation
of Lauricella-Saran hypergeometric function \(F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\mathbf{z})\).
Mathematics 2023, 11 (21), 4487.
doi:10.3390/math11214487
- Antonova T., Dmytryshyn R., Kravtsiv V. Branched continued
fraction expansions of Horn’s hypergeometric function \(H_3\) ratios. Mathematics 2021,
9 (2), 148. doi:10.3390/math9020148
- Antonova T., Dmytryshyn R., Kril P., Sharyn S. Representation of
some ratios of Horns hypergeometric functions \(\mathrm{H}_7\) by continued fractions.
Axioms 2023, 12 (8), 738.
doi:10.3390/axioms12080738
- Antonova T., Dmytryshyn R., Sharyn S. Branched continued fraction
representations of ratios of Horns confluent function \(\mathrm{H}_6\). Constr. Math. Anal.
2023, 6 (1), 22–37. doi:10.33205/cma.1243021
- Antonova T., Dmytryshyn R., Lutsiv I.-A., Sharyn S. On some
branched continued fraction expansions for Horn’s hypergeometric
function \(H_4(a,b;c,d;z_1,z_2)\)
ratios. Axioms 2023, 12 (3), 299.
doi:10.3390/axioms12030299
- Bodnar D.I. Branched Continued Fractions. Naukova Dumka, Kyiv, 1986.
(in Russian)
- Bodnar D., Bilanyk I. Convergence criterion for branched
continued fractions of the special form with positive elements.
Carpathian Math. Publ. 2017, 9 (1), 13–21.
doi:10.15330/cmp.9.1.13-21
- Bodnar D., Hladun V. Sufficient conditions of stability of
branched continued fractions with positive elements. Mat. Metody
Fiz.-Mekh. Polya 2002, 45 (1), 22–27. (in
Ukrainian)
- Cotan P., Teseleanu G. Continued fractions applied to a family of
RSA-like cryptosystems. In: Su C., Gritzalis D., Piuri V. (Eds.) Proc.
of the Intern. Conf. “Information Security Practice and Experience”,
Taipei, Taiwan, November 23–25, 2022, Lect. Notes Comput. Sci. 2022,
13620, Springer, Cham, 2022,–605.
doi:10.1007/978-3-031-21280-2_33
- Cuyt A., Petersen V.B., Verdonk B., Waadeland H., Jones W.B. Handbook
of Continued Fractions for Special Functions. Springer, Berlin,
2008.
- Dmytryshyn R., Goran V. On the analytic extension of
Lauricella-Saran’s hypergeometric function \(F_K\) to symmetric domains. Symmetry
2024, 16 (2), 220. doi:10.3390/sym16020220
- Dmytryshyn R.I. Multidimensional regular C-fraction with
independent variables corresponding to formal multiple power
series. Proc. Roy. Soc. Edinburgh Sect. A 2020,
150 (4), 153–1870. doi:10.1017/prm.2019.2
- Dmytryshyn R.I., Sharyn S.V. Approximation of functions of
several variables by multidimensional S-fractions with independent
variables. Carpathian Math. Publ. 2021, 13 (3),
592–607. doi:10.15330/cmp.13.3.592-607
- Hladun V. Some sets of relative stability under perturbations of
branched continued fractions with complex elements and a variable number
of branches. J. Math. Sci. 2016, 215 (1), 11–25.
doi:10.1007/s10958-016-2818-x (translation of Mat. Metody Fiz.-Mekh.
Polya 2014, 57 (2), 14–24. (in Ukrainian))
- Hladun V., Bodnar D. Some domains of relative stability under
perturbations of branched continued fractions with complex
elements. Bukovinian Math. J. 2018, 288, 18–27.
(in Ukrainian)
- Hladun V., Hoyenko N., Manziy O., Ventyk L. On convergence of
function \(F_4(1,2;2,2;z_1,z_2)\)
expansion into a branched continued fraction. Math. Model. Comput.
2022, 9 (3), 767–778. doi:10.23939/mmc2022.03.767
- Hoyenko N., Hladun V., Manzij O. On the infinite remains of the
norlund branched continued fraction for Appell hypergeometric
functions. Carpathian Math. Publ. 2014, 6 (1),
11–25. doi:10.15330/cmp.6.1.11-25
- Jin J., Tian J., Yu M., Wu Y., Tang Y. A novel ultra-short-term
wind speed prediction method based on dynamic adaptive continued
fraction. Chaos Solitons Fractals 2024, 180,
114532. doi:10.1016/j.chaos.2024.114532
- Jones W.B., Thron W.J. Continued Fractions: Analytic Theory and
Applications. Addison-Wesley Pub. Co., Reading, 1980.
- Kane A.M. On the use of continued fractions for electronic
cash. Int. J. Comput. Sci. Secur. 2010, 4 (1),
136–148.
- Kane A.M. On the use of continued fractions for mutual
authentication. Int. J. Inf. Secur. Sci. 2012, 1
(3), 88–99.
- Kuchminska Kh.Yo. Two-dimensional Continued Fractions. Pidstryhach
Institute for Appl. Probl. in Mech. and Math., NAS of Ukraine, Lviv,
2010. (in Ukrainian)
- Lorentzen L., Waadeland H. Continued Fractions with Applications.
North-Holland, Amsterdam, London, New-York, Tokyo, 1992.
- Lorentzen L., Waadeland H. Continued Fractions. Vol. 1: Convergence
Theory. Atlantis Press/World Scientific, Paris, Amsterdam, 2008.
- Manziy O., Hladun V. Ventyk L. The algorithms of constructing the
continued fractions for any rations of the hypergeometric Gaussian
functions. Math. Model. Comput. 2017, 4 (1),
48–58. doi:10.23939/mmc2017.01.048
- Moscato P., Ciezak A., Noman N. Dynamic depth for better
generalization in continued fraction regression. In: Proc. of the
Genetic and Evolutionary Computation Conference, Lisbon, Portugal, July
15–19, 2023, Association for Computing Machinery, New York, 2023,
520–528. doi:10.1145/3583131.3590461
- Moscato P., Haque M.N., Huang K., Sloan J., Corrales de Oliveira J.
Learning to extrapolate using continued fractions: Predicting the
critical temperature of superconductor materials. Algorithms 2023,
16 (8), 382. doi:10.3390/a16080382
- Moscato P., Haque M.N., Moscato A. Continued fractions and the
Thomson problem. Sci. Rep. 2023, 13 (1), 7272.
doi:10.1038/s41598-023-33744-5
- Moscato P., Sun H., Haque M.N. Analytic continued fractions for
regression: A memetic algorithm approach. Expert Syst Appl. 2021,
179, 115018. doi:10.1016/j.eswa.2021.115018
- Pillai J.S., Padma T. The snalysis of PQ sequences generated from
continued fractions for use as pseudorandom sequences in cryptographic
applications. In: Dash S., Bhaskar M., Panigrahi B., Das S. (Eds.) Proc.
of the Intern. Conf. “Artificial Intelligence and Evolutionary
Computations in Engineering Systems”, Chennai, India, April 22–23, 2015,
Advances in Intelligent Systems and Computing, 394,
Springer, New Delhi, 2016, 633–644. doi:10.1007/978-81-322-2656-7_58
- Puri I., Dhurandhar A., Pedapati T., Shanmugam K., Wei D., Varshney
K.R. CoFrNets: interpretable neural architecture inspired by continued
fractions. In: Ranzato M., Beygelzimer A., Dauphin Y., Liang
P.S.,Wortman V.J. (Eds.) Proc. of the Conf. “Neural Information
Processing Systems”, December 6–12, 2020, Online, Neural Information
Processing Systems Foundation, Inc., 2021, 21668–21680.
- Sauer T. Continued Fractions and Signal Processing. Springer, Cham,
2021.
- Wall H.S. Analytic Theory of Continued Fractions. D. Van Nostrand
Co., Inc, New-York, 1948.