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On some approximate properties of biharmonic Poisson
integrals in the integral metric

Zhyhallo K.M., Kharkevych Yu.I.

This paper is devoted to solving one of the extremal problems in the theory of approxima-
tion of functional classes by linear methods of summation of the Fourier series in the integral
metric, namely, approximation of classes L:éjll by biharmonic Poisson integrals. As a result of
the research, we have found the asymptotic equalities for the approximation values of classes of
(¢, B)-differentiable functions by biharmonic Poisson integrals, that is, have found solutions of
the Kolmogorov-Nikol’skii problem for biharmonic Poisson integrals on classes Lg,l in the integral
metric.
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Let L be the space of summable 27-periodic continuous functions f with norm

7T
1fl = 5l = [ (£
Let Lo be the space of measurable and essentially bounded 27-periodic functions with
norm ||f||c = esssup|f(x)].

X
If f € Ly, then according to [1], the quantity

1 T
Bo(fix) = o [ flx+DP(pt)at, 0<p<1, (1)
27T J—n
is called the biharmonic Poisson integral of the function f, where

(1- p2)2 (1 —pcost)
(1—2pcost+ p2)*

P(p,t) = (2)

is its kernel. Having expanded the right-hand side of (2) into the Fourier series and having put

at the same time p = e¢” 5, § > 0, everywhere and hereafter (see, e.g., [2]), it is convenient to
write the biharmonic Poisson integral (1) as

By(f;x) := Bs(f;x) = %/_if(x—i—t){% —i—kozil <1+§ <1 —e_%> )e‘lg coskt}dt. (3)

O.I. Stepanets [3, Ch. III] proposed the classification of periodic functions based on the
concept of (¢, B)-derivatives. Let (k) be an arbitrary fixed function of the natural argument
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and B be a fixed real number. If the series
0 7)o (0 7))
—— | axcos | kx + —= ) + bysin | kx + —-
GICIES 2
is the Fourier series of some function ¢ € Ly, then this function is called the (¢, B)-derivative
of the function f and is denoted by f;f (x), namely ¢(x) = figp (x). The set of all functions f

satisfying this condition is denoted by Lg. If f e Lg and f;f € N, where N is some subset of

functions from L;, then we write that f € Lz’ﬁ. Further, we assume that Lg NnC = Cg and

Lg‘ﬁ NC = Cgsﬁ. Let us consider the unit balls

UL ={p€Llo:llgllo <1, ¢ll}, U ={peLli:l|gl<1 9ll}

in spaces Lo and Ly, respectively. Then the sets Lgu?, C;fugo are denoted by Lg,l and Cg’oo,
respectively.

If (k) = k=7, r > 0, then according to [4, Ch. T], Cg = Wg and f;f = fér) is the
(r, B)-derivative in the sense of Weyl-Nagy. If r € N and r = f, then Wy = W".

The set of positive continuous and convex downward functions (1), u > 1, that satisfy
the condition ulgrolo Y (u) = 0 is denoted by 91 [3, p. 159]. Let M be the subset of the functions

from 991 defined as follows

My = {p eM: 0 <

t
TR Vtzl}, 4)
where () = 5 (y;t) = ¢! <%¢7(t)> and the function ¢! is the inverse function to 1. We
should note that the constant K in (4) can depend on .
Following O.L. Stepanets [5], the problem of finding the asymptotic equalities for the quan-
tities
£(2; Bs)x Zilelng(-) = Bs (f:)|x ®)

as 6 — oo is called the Kolmogorov-Nikol’skii problem for the biharmonic Poisson integral
B; (f; -) and the class of functions 2 in the metric of space X.

The problem of type (5) for the biharmonic Poisson integral was first solved by S. Kaniev [1].
Later, his research was continued in the papers [6-11] for various classes of functions in the
uniform metric. The Kolmogorov-Nikol’skii problem (5) on the classes of (i, §)-differentiable
functions for the biharmonic Poisson integral in the integral metric has not been solved yet.
That is why the purpose of this paper is to study the approximate properties of the biharmonic
Poisson integral on the classes Lg/l for an arbitrary real value of j in the integral metric.

The following statement is true.

Theorem 1. Let ¢ € My, the function g(u) = u?p(u) is convex downward for all u € [1,00)

and 5
lim / 804) 4y — oo, ©6)
0—o00 J1 u
lim g(u) = K < oo. (7)

U— 0

Then for § — oo and sin %ﬂ # 0 the following asymptotic equality holds

p .p) _ 1] B7 l/5M 1
5<L5/1’B‘5>1_7'c 21621 u du+0 62 ) ®)

sin
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Proof. Similarly to [12] (formula (7)), it is convenient to introduce the summing function
_ 0 (1_e3 —u| ¥(1)
_ S (1_ .3 —u | P(ou) 1

for the biharmonic Poisson integral (2) defined by relation (3). According to [13], the Fourier
transform

IN
IN

1
u 57

T(u) = () = ©)

2(t) = B(t) = % /0 " £(u) cos <ut + ﬁ—) du (10)

of the function (9) is summable on the whole real axis. That is, the integral
(o] 1 (o] IB
— t+—|d
/40 7_(/0 T(u)cos<u+2>u

Taking into account summability on the R of the function (10), let us further consider the
function

dt (11)

is convergent.

1‘/’ (6, x) / f/3 <x+ ) 2(t)dt, >0, xE€R, (12)

forall f € Lg/l, where the improper integral should be understood as the limit of integrals over
symmetric intervals that have the ability to expand.

Since the periodicity of the function (12) is obvious, then using the generalized Minkowski
inequality [14, p. 299], we obtain

/_Z)Izl(é,x)‘dxg/_o;/_i\?(t)\'f;f <x—|—§>
:/_Z}?(t)\/_i ¢<x+§>

Thus, we have shown the convergence of the function IZJ,1 (6, x). Using the methods from [3],

dx dt

dx dt < oo,

we can find the Fourier coefficients of the function Ig]l (6, x), namely

o (h60) = 57 (5) b (thom) = o (5) 0

where the function 7(%) is given by relation (9) and coefficients ay(f) and by (f) are the Fourier
coefficients of the function f € LY g1+ Thus, according to the notations of the paper [15], the

Fourier series of the function Ig)1 (6, x) takes the form

S[1§1(6,x)] =S [/_ng <x + g) ?(t)dt] = i T (g) ﬁ(ak(f) cos kx + by(f) sinkx).

k=0
As before, the function (u) is continuous and defined for all u > 1. At points u = k this

function takes the value ¢(k). According to the above equality, the function 7(u) given by the
relation (9), satisfies the condition

5 [/_ng’ <x+ g) ?(t)dt] _ ﬁs[f(x) Py )]

that is valid for all f € L.
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It follows that if the function 7(u) is given by the relation (9) and its Fourier transform is
summable on the whole real axis (according to [13]), then for all f € Lg,l and almost all x the
equality

I =Bl = wie) [ 5f (x4 5) ot 1)

holds.

Taking into account the equalities (3) and (13), similarly to the considerations of the paper
[16], we can show that

& (Lﬁ,l;Ba)l =& (CEW Ba)c +0(y(9)) /“25271 /Ooo (u) cos <ut+ %) duldt,  (14)
where
€<CZOO;B(5)C = sup |f(x) = Bs(f; )| -
fech,

Using [13, formula (5)] to the first term of the right-hand side of (14), we obtain

£ <Lgl,B5)1 :@ /_o:o /Ooor(u)cos <ut+ 52 ) du
+O<1,IJ(5) /|t257” /Ooo T(u) cos <ut+ ﬁ%) du

According to [13, equality (63)] and the notation of the function g(u) from the condition of
Theorem 1, we have the estimate for the first integral in the right-hand side of (15), namely

/i /Ooor(u)cos<ut+’82>du
sm— <52¢ /g du —|——/ g > (16)
+o<1+52¢(5)/1 guz du>.

As for the estimate of the second term in the right-hand side of (15), we can repeat the
considerations given in [13]. Hence,

oo 1 1 1
¥ (9) /|t252” /0 T(u) cos <ut+57n> du‘dt =0 <5—2+ 5—3/1 %du) , 0 — oo. (17)

By the condition of Theorem 1, the function g(u) is convex downward for all u > 1, then it

dt

(15)

dt), 6 — oo,

dt

is obvious that

1 oog), 1 21#() o [Cdu
(o) Js  ud d”_¢(5)/5 B dus0 /5 5 =0 (18)
d
. W < gy [~ o), (19)
1 u? ¥ 1 2

Using to the right-sides of the equalities (16) and (17), the relations (18), (19), (7) and (6),
from (15) we obtain the validity of the formula (8). Thus, the theorem is proved. O
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Remark 1. We should note that Theorem 1 holds when the functions ¢ € 9 for u > 1 have

the form
e ¥+ K

P(u) = —a K = const > 0,
or
arctan u
Pp(u) = —Z
or »
In(u +K
P(u) = %, —1<9<0, K=const>0.
In particular, when (1) = # we have
1. Brr|Ind 1
2 —
5(W5,1,Bo‘)1 = 'smT 5 + 0 (ﬁ) , 0 — 00, (20)

where W/%,l is the class of 27t-periodic functions that have an absolutely continuous derivative
and || f" (x)||, < 1.

By considerations that are similar to the proof of Theorem 1, we can show that the following
theorem holds.

Theorem 2. Let ¢ € My, the function g(u) = u*p(u) is convex upward or downward for all
u € [1,00) and

, 1 So(u)y, , B
615210 2p0) /1 ” du = oo, ulgrolog(u) = oo0.

Then for § — oo and sin %ﬂ # 0 the asymptotic equality

& <LZ1,‘B(5>1 = % 'sin’%-( %/10 %du +O(y(5))

holds.

Remark 2. We should note that conditions of Theorem 2 are satisfied, e.g., for functions of the

form

1 K))”
gb(u):w, K =const>0, v>0.
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Pob6oTa npucssiueHa po3B’sI3aHHIO OAHI€T 3 eKCTpeMaAbHIMX 3aAaU Teopil HabAVDKeHHsT PYHKITIO-
HaABHMX KAAaCiB AiHIHMMM MeTOAaMM IIACYMOBYBaHHSI psiaip @yp’e B iHTerpaabHiNM MeTpwuii,
a caMe, HabAVDKEHHIO KAaciB Lg/l birapmoHiurmMy iHTerpasamu IlyaccoHa. Y pesyabTaTi mpoBeae-
HUX AOCAIAXEHb BAAAOCS 3HAMTM acCMMITOTWYHI PiBHOCTI AAS BEAMUMH HAaOGAVDKEHHS KAaciB
(1, B)-andpepeHtiitoBaNX (PyHKUIN birapMoHitHuMuy iHTerparamu IlyaccoHa, TO6TO 3HatTH PO3-
B’s13km 3apavi Koamoroposa-Hikoabcbkoro aast 6irapMoHiuHuX iHTerpanis [TyaccoHa Ha Kaacax Lg,l
B iHTerpaAbHiil MeTpUIL.

Kutouosi cnoea i ppasu: (i, B)-moxiaHa, 3araua Koamoroposa-Hikoabcbkoro, birapMoHi9HMIz iH-
terpaa IlyaccoHa, iHTerpasbHa MeTpHKa.



