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Perturbation of an isotropic a-stable stochastic process by a
pseudo-gradient with a generalized coefficient

Boiko M.V., Osypchuk M.M.

The article is devoted to the perturbation of an isotropic a-stable stochastic process in a finite-
dimensional Euclidean space by a pseudo-gradient operator multiplied by a delta-function on a hy-
persurface. This is analogous to the construction of some membrane in the phase space. Semigroup
of operators on the space of continuous bounded functions is constructed. It has the infinitesimal
generator (in some generalized sense) cA, + (gdsv, Vﬁ), where ¢ is some positive constant, A, is
the fractional Laplacian of the order «, dg is the delta-function on the hypersurface S, which has
a normal vector v, g is some continuous bounded function, Vg is a fractional gradient (pseudo-
gradient), that is the pseudo-differentional operator defined by the symbol iA|A|f~1. The order of
the pseudo-gradient is less than & — 1. Some properties of the obtained semigroup are investigated.
This semigroup defines a pseudo-process.
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Introduction

Let us fix some constants d € IN, ¢ > 0, and « € (1, 2]. Consider the function

1 , .
(%) = (7 [, @ 00y =) — A} dr (1)

given for all t > 0, x € R%, y € RY. At some partial values «, the integral (1) can be calculated
explicitly. In particular, for & = 2, we have

_ 1 ly — xf?
g(f,x,y)—meXp{—T}. (2)

The function g is the transition probability density of an isotropic a-stable stochastic process;
the case of @ = 2 relates to the Brownian motion.

Let S be some given hypersurface in IR, i.e. a manifold of dimension d — 1. In this paper,
we limit ourselves to a hyperplane or a bounded closed surface of the class H*? with some
fixed v € (0,1) (see, for example, [5, Ch. III, §8]). Let us denote the unit vector of the outward
normal to the surface S at the point x € S by v(x). In the case of a hyperplane this vector is
constant, v(x) = v, thus, let us consider that the hyperplane is set by an equation (x,v) = 0.
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Let a continuous function g(x) be defined at all points of the surface S. Additionally, we
will assume its boundedness if S is a hyperplane.

After choosing some 0 < < a, let us denote the B-order “pseudo-gradient” by Vg, i.e. it
is the operator which is defined by the symbol (iA[A[F~1) rcrd- In the case of B =1, it is the
ordinary gradient.

Our goal is to construct a perturbation of the isotropic a-stable stochastic process using
operator (gésv, V 5), where under Jg we understand symmetric delta function focused on the
surface S. In other words, it is a generalized function that acts on every test function (at least
continuous finite function) ¢(x), x € R?, by the formula (Js, ¢) = [ ¢(x)do, where the inte-
gral is the surface one of the first kind.

Under the perturbation of an isotropic a-stable stochastic process we understand the con-
struction of an operators semigroup (T}),.,, given on a set C, (]Rd) of continuous bounded
functions defined on R? with an infinitesimal generator of the form cA, + (gésv, V B)s
where A, = —(—A)? is the a-order fractional Laplacian, i.e. the operator defined by the
symbol (—[A[*) g

The problem of perturbation of Markov processes was and remains the focus of atten-
tion of many researchers. The diffusion case, that is, if ¥ = 2, was considered (in much
more general situations) by M.I. Portenko (see [13,17] and referenses there). The perturbation
operators have the form (a(-), V), where the function a(-) belongs to some L,-space of func-
tions or is some generalized function of the delta function type. The case & < 2 was considered
in the work [1] by K. Bogdan and T. Jakubowski, who studied such a perturbation with the
function a from a Kato class. In [6], T. Jakubowski considered a fundamental solution of the
fractional diffusion equation (like written above) with a singular drift, i.e. the case of p =1
and some singular function a. S.I. Podolynny and M.I. Portenko [12, 14-16] investigated this
perturbation with function from Ly. J.-U. Loebus and M.I. Portenko [7] perturbed the infinites-
imal generator of a one-dimensional symmetric a-stable process using the operator (g, 95—1),
where d,_1 is a pseudo-differential operator of order « — 1. Results with « € (1,2) and per-
turbation operators of the type (a(~), V,X,l) can be found in [8,9]. We studied the case of
perturbation operators (a(-), Vg) with a(-) with L, and 0 < B < a in [2]. In this paper, fo-
cusing on the d-dimensional Euclidean space with d > 2, we consider the cases 1 < a < 2,
0 < B < « — 1 and the function a(-) which is of the delta-function type.

The next section is devoted to solving the perturbation equation. And in the last section,
we investigate some properties of the constructed perturbed semigroup of operators defined
on the space of continuous bounded functions.

1 Perturbation equations

Let us consider the equation

G(t,x,y) = g(t, x,y) —{—/ dT/ —7,%,2)(v(-), Vg)G(T,-, y)(2)q(z) doz, (3)

with t > 0, x € RY, Yy e R?, which is called as the perturbation equation (see, for example,
[8,9,13,17]). Another perturbation equation

G(t,x,y) = g(t,x,y) —{—/ dT/ —7,%,2)(v(-), Vg)&(T, " y)(2)q(z) doz,
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is conjugate to (3). Solutions to equation (3) can be written as the function

G(t,x,y) =gt x,y) +/ dT/g —7,x,2)0(7,2,v)q(z) doz, 4)

givenatt > 0, x € RY, y € R?, where the function v(t, x, y) is defined by the equation
t
v(t,x,y) = vo(t, x,y) +/ dT/ vo(t —T,x,2)v(7,2,y)q(z)doz, t>0, x€ RY, yE RY, (5)
0 S

in which vo(t, x,y) = (v(-), Vg)&(t, - y)(x).

First of all, let us prove the correctness of the function G definition, that is, the existence
of a solution to equation (5) and the convergence of the integral in (4). Let us consider the
caseof 1 <a < 2.

Lemma 1. If 0 < B < a — 1 < 1, then there is a unique solution to equation (5) in a class of
functions satisfying the inequality

1
T
(tv 4y —x
for each T > 0 with some constant Ct > 0 possibly depending on T.

€ (0;T), x€S, yeRY, (6)

o(t,%,y)| < C G

Proof. Let us construct the solution to equation (5) using the method of successive approxi-
mations. Namely, consider the sequence of functions (vk(t, X, y)), k=0,1,2,..., given by the
recurrence relation

vr(t, x,y) = /dr/vo —1,%,2)04_1(T,2,y)q(z)do,, t>0,x€S, ye R

The existence of such a sequence follows from a well-known estimation (see [3])
C
1
(ts 4+ [x —y
and the inequality (see [11, Lemma 2])

t _ ” A
/0 dr /5 (lt T) drk 1 - 77 4oz
(t=—1)s+|x—2z|)" " (v8 + |z —y|)

}vo(t,x,y)‘ < ’)d+ﬁ, t>0,x€S, yeRY, (7)

k+1 plsepA—E
§K<B<1+ 14N — - (8)
(tx + |y — x])
T+se+a-11
+B<1+A—l+—1 14 ) ! M)
“ (tx + |y — x])

which is correct forallk > —1,1 > —1, ¢ > k“ —1,A> % — 1 with a constant K > 0, which
depends only on d, k, | and the surface S.
Indeed, using the method of mathematical induction it is easy to prove that
£k (1)
}vk(t,x,y)} < Ry— Y t>0, xeS,yele, 9)
(ts + |x =)

where the constants R > 0 satisfy the recurrence relation (k =0,1,2,...)

Ry = Rk1CHqHK<B< - #,ht (k=1)(1- #)) +B(k(1- #)1))
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with Ry = C (constant taken from the estimation vp), and ||| = max,cs |(x)|. Inequalities
(9) guarantee the good convergence of the series ) ;7 , Uk(t, x, v). Namely, this series converges
uniformly in x € S,y € R? and locally uniformly in ¢ > 0. Let us denote its sum by v(t, x,y)
with t > 0, x € S,y € RY. Tt follows from (9) that the function v satisfies estimation (6).

It is obvious that the function v is a solution to equation (5) by its constructing. The unique-
ness of this solution in the class of functions that satisfy (6) follows from the fact that the dif-
ference w of every two such solutions satisfies the equation

w(t,x,y) = / dT/UO —1,%,2)w(T,z,y)q(z)doz, t>0,x€S, ycR

Hence, using (7) and (8), we obtain

it x,9)| < Creata) K B(1 - L 1+ G- 1) (1- 1))

+B(k<1— 1:5),1)> T |x1—y|)d+’3’

forallk € N,t € (0,T], T >0,x € S,y € R?. This proves the identity w(t, x,y) = 0. The
lemma is proven. O

The convergence of the integral in (4) now follows easily from the statement of Lemma 1,
the well-known (see [3]) estimation

Ct
gt x,y) < )d+rx’ t>0, xcRY, yeRY, (10)

(t + |x —y]

and inequalities (8).
From equality (4), taking into account estimations (6), (10) and inequality (8), we obtain

Gltxy)| < o C ( S i )
7 7 —_— T
(5 + [x —y[)™° (£ + x—y) P (85 4 x—y)) "

N
T 7
(# +x—y)) P

which is true forall t > 0, x € R, yE R?, for each T > 0 with some constant Ct > 0.
Consider the case of « = 2. The function g is now given by equation (2). Then

1 d+B+1\ = /d+p+1 d |x—y)*\ y—x
Vpslt - y)x) = 2d+1n‘§’r< (Tl >(ct)d%ﬁ' (1
where 1Fi(a,b,r) = Zk 0 r k;{,rk is a regularized confluent hyper-geometric function

(see [4]).
It is known that lim, .« 1 F} (a,b; —r)r* = ﬁ. Hence, taking into account representation
(11), we obtain the estimation

Ct?
(t2 + |x —

where C > 0 is some constant. Estimation (12) is of the same type as (7). Therefore, the
statement analogous to Lemma 1 in the case of « = 2 is as follows.

Ves(t, - y)(x)] < T £>0, xR, y e RY, (12)
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Lemma 2. Fora = 2,0 < B < 1, there is a unique solution to equation (5) in the class of
functions satisfying the inequality

NI—

t

}v(t,x,y)} < Cr— gt te (0;T], x€S, yeRY, (13)
(t2 + |x = yl)
for each T > 0 with some constant Ct > 0.
Proof. The proof of this statement is absolutely analogous as the proof of Lemma 1. O

Let us use estimation (10), which holds in the case of « = 2, also. We obtain the following

inequalities
Ct t 1272
G(t/x/y) S +CT( + )
‘ } (t%—i—]x—y]){ﬂz (t%+‘x_y’)d+,3 (t%+‘x_y’)d+2
<C i
<C7 ,
(# + | —y|) P

valid for all t € (0, T], x € R, y € R, and every T > 0.
Therefore we can claim that the function G(t,x,y) witht > 0, x € RY, y € R? is correctly
defined by equality (4). Moreover we have the following estimation

B
te

IG(t,x,y)| < Cr t€(0,T], xR, y € RY,

(t% + |x —y\)d+’3’

for each T > 0 with some constant Cy > 0.

2 The operators semigroup

The set C,(R?) of continuous and bounded real-valued functions defined on R? is a

polish space with respect to the norm |¢|| = max,.gs |@(x)|. Let us define the family of
operators (T;),- o by the equality
Tip(x) = /Rd o(y)G(tx,y)dy, t>0, x €RY, g e Cy(RY), (14)

where the function G is defined by the formula (4) for the case of & € (1,2],0 < B < a« — 1. The
main properties of the operators family (14) are considered in the following theorem.

Theorem 1. The following statements are fulfilled.

1. The operator T; is linear and bounded on Cy, (RY) for any t > 0.

If p(x) =1, then T;p(x) =1 forall t > 0.

The equality Tst = Ts o T is valid for all s > 0 and t > 0.

The equality limy o T;¢(x) = @(x) holds for every ¢ € C;, (RY) and for all x € R%.

ook BN

The function U(t, x) = Ty¢(x) satisfies the equation

%U(t,x) = cAU(t, ) (x) +q(x)ds(x) (v(x), Vg)U(t,-)(x), t>0,x€ RY, (15)
where the equality is understood in the generalized sense and the function v(x), x € S,

is extended by arbitrary way (keeping the equality |v(x)| = 1) on R¥.
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Proof. The linearity of operator T; is evident. Let us prove its boundedness. If ¢ € Cj, (RY),
then using inequality (12) we can write

dy B
Tip(x)| < [, |Gtxy)|avllel < Crligll [, el S

< CTHG')H/ W < Crllgl

forallt € [0,T] and any T > 0. Therefore the operators T; are bounded and statement 1 is
proven.

The proof of statement 3 is a verbatim repetition of the corresponding statement proof
in [13], where the case of « = 2 and B = 1 is considered in a more general situation. The

following two facts are used in that proof. First, the family of operators (Tt(o)) 1~ defined by
the equalities T( ) f]Rd o(y)g(t, x, y) dy, t > 0, x € RY, ¢ € Cy(RY), is a semigroup.

Second, the functlon th) f]Rd (y)o(t,x,y)dy, t > 0, x € R is the unique solution to
the equation (see (5))

t
Vip(x) = Vt(o)go(x) —1—/0 dT/Svo(t —1,%,2)4(2)Vep(z)do,, t>0, x € RY, (16)

for every ¢ € Cp (R?), where Vt(o)go(x) = [re 9()vo(t, x,y)dy. This equation is actually
equation (5) which is multiplied by the function ¢(y) and integrated with respect to y € R?.
These facts hold true in our case.

If (x) = 1, then the function V;¢(x), t > 0, x € RY, is the unique solution to equation (16)
with Vt(o)q)(x) = 0. This means that V;¢(x) = 0 and T;p(x) = Tt(o)q)(x) =1, i.e. statement 2 is
proven.

Let us prove statement 4. We have to take into account that lim; Tt(o) @(x) = ¢(x), x € RY,
and the following inequality |Vig(x)| < Cr|l¢| [rae (1+ |u|)_d_ﬁ du - ¥ hold for all a < 2,
t € [0,T], x € R and any T > 0. The last inequality is a consequence of estimation (6). If
« = 2 estimation (13) leads us to the inequality |Vi¢(x)| < Cr|l]|| [ga (1+ |u|)_d_ﬁ du-t2
Therefore, using the inequality (see [11, Lemma 1]) f p g(t—1,x,z)do, <Cr e p e (0,T],
x € RY, we obtain

t 1-£+1 .
o 97 s < Crllollal="%, ifa <2,

(t—1,x,2)9(z)Vrp(z) do

or

f B
[dr [ 8(t—Tx,20() Veg() dox| < Crllglllalie™%, ifw =2

Both of these expressions tend to 0 as t | 0. This justifies statement 4.
It is well-known, that the function u(t,x) = fle e(y)g(t,x,y)dy, t >0, x € R, with any
¢ € Cy (R?) satisfies the equality

%u(t x) = cAqu(t,-)(x), t>0, x €RY, (17)

and the initial condition #(0+, x) = ¢(x), x € R%. Let us consider the function

1(t,x) = /Ot dT/Sg(t —7,%,2)q(2) Ve @(z) do (18)
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forp € Cy (R?) and all t > 0, x € RY.
Since |g(x)Vig(x)| < Crlglllglt#/* (or |g(x)Vig(x)| < Crlglllplt=F72 if a = 2),
t € (0,T], x € Sforall T > 0 (see above), function (18) satisfies equation (17) for all t > 0
and x € R? \ S as a single-layer potential (see [10]). Moreover, as we saw above, u1(0+, x) = 0.
Now, for any continuous finite function ¥ (x), x € R?, we get

/]Rd 1/J(x)%u1(t,x, @) dx :c/]Rd P(x)dx /Ot dT/SA,Xg(i'—T, -, 2)(x)Vrp(z)q(z) do

+lim [ () dx [ glex2)(x)Vep()(z) do

:c/]Rd P(x)Ay </0t dT/Sg(t —7,,2)Vep(z)q(z) d0’2> (x)dx
+ [ ¥(2)Vig()q(z) do
=c [ bt )(x) dr + [ $(E)Vip(z)q(z) do.

This is a consequence of the possibility of entering the operator A, under the integral sign and
of the equality [ps8(e, x,2)9(z)dz — ¢(x) as ¢ — 0+ for every continuous bounded func-
tion ¢. But the equality V;p(x) = (v(x), Vg)U(t,-)(x) is true for all t > 0, x € S. Therefore,
equality (15) is proven. O

Remark 1. Unfortunately, we cannot assert the non-negativity of the function G. Therefore, it
does not generate any stochastic Markov process, but only a pseudo-process.
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CraTTs IpuUcBsTUeHa 30y PEHHIO i30TPOIHOTO A-CTilIKOTO BUIIAAKOBOTO IPOLECY B CKiHUEHHOBM-
MipHOMY €BKAIAOBOMY IIPOCTOPi OllepaTOpPOM IICeBAOTPaAieHTa, TOMHOXEHVM Ha AeAbTa-(PyHKIII0
Ha TinmeprioBepxHi. Lle anaroriuHo 06yA0Bi Aesikol Membparu y dpazoBomy mpocropi. [Tobyaosa-
HO HaIIBrpyIly OIlepaTOpiB Ha IIPOCTOpi HellepepBHMX obMeXeHMX pyHKIIIN. BoHa Mae iH(iHiTe-
3MMaABHWI TeHepaTop (y AeSKOMy y3araabHeHOMY po3yMiHHi) cAq + (qdsv, V), ae ¢ — aesika Ao-
AaTHa cTana, A, — ApObOBMIT AaTIAaciaH MOPSIAKY &, 0 — AeAbTa-(PYHKIIISI Ha TillepIoBepXHi S,
sKa Mae HOPMaABHMIT BEKTOP V, § — Aesika HerlepepBHa obMexeHa dyHxuist, Vg — Apobosuii rpa-
Al€eHT (mceBAOTpaAieHT), TO6TO MceBAOAVpepeHIIiHMIT OTlepaTop, BU3HAUeHMit CUMBOAOM iA|A|P 1.
INopsiaox mceBAOTpaAieHTa MeHIIVIA, HiX & — 1. AOCAiAXeHO AesIKi BAACTMBOCTI OTpMMaHOI HalliB-
rpymu. Ll HamiBrpymna Bu3Hadae IceBAOIPOLIEC.

Koouosi cno6a i ¢ppasu: a-CTIViKMIA BUITaAKOBMIL IIpOIieC, 30y PeHHSsI, ICeBAOTPAAIEHT, HalliBrpyTIa
oIlepaTopiB, IceBAOIPOIIeC.



