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Perturbation of an isotropic α-stable stochastic process by a
pseudo-gradient with a generalized coefficient

Boiko M.V., Osypchuk M.M.

The article is devoted to the perturbation of an isotropic α-stable stochastic process in a finite-

dimensional Euclidean space by a pseudo-gradient operator multiplied by a delta-function on a hy-

persurface. This is analogous to the construction of some membrane in the phase space. Semigroup

of operators on the space of continuous bounded functions is constructed. It has the infinitesimal

generator (in some generalized sense) c∆α + (qδSν,∇β), where c is some positive constant, ∆α is

the fractional Laplacian of the order α, δS is the delta-function on the hypersurface S, which has

a normal vector ν, q is some continuous bounded function, ∇β is a fractional gradient (pseudo-

gradient), that is the pseudo-differentional operator defined by the symbol iλ|λ|β−1. The order of

the pseudo-gradient is less than α − 1. Some properties of the obtained semigroup are investigated.

This semigroup defines a pseudo-process.
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Introduction

Let us fix some constants d ∈ N, c > 0, and α ∈ (1, 2]. Consider the function

g(t, x, y) =
1

(2π)d

∫

Rd
exp {i(λ, y − x)− ct|λ|α} dλ (1)

given for all t > 0, x ∈ R
d, y ∈ R

d. At some partial values α, the integral (1) can be calculated

explicitly. In particular, for α = 2, we have

g(t, x, y) =
1

(4cπt)
d
2

exp

{

−
|y − x|2

4ct

}

. (2)

The function g is the transition probability density of an isotropic α-stable stochastic process;

the case of α = 2 relates to the Brownian motion.

Let S be some given hypersurface in R
d, i.e. a manifold of dimension d − 1. In this paper,

we limit ourselves to a hyperplane or a bounded closed surface of the class H1+γ with some

fixed γ ∈ (0, 1) (see, for example, [5, Ch. III, §8]). Let us denote the unit vector of the outward

normal to the surface S at the point x ∈ S by ν(x). In the case of a hyperplane this vector is

constant, ν(x) ≡ ν, thus, let us consider that the hyperplane is set by an equation (x, ν) = 0.
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Let a continuous function q(x) be defined at all points of the surface S. Additionally, we

will assume its boundedness if S is a hyperplane.

After choosing some 0 < β < α, let us denote the β-order “pseudo-gradient” by ∇β, i.e. it

is the operator which is defined by the symbol
(

iλ|λ|β−1
)

λ∈Rd . In the case of β = 1, it is the

ordinary gradient.

Our goal is to construct a perturbation of the isotropic α-stable stochastic process using

operator
(

qδSν,∇β

)

, where under δS we understand symmetric delta function focused on the

surface S. In other words, it is a generalized function that acts on every test function (at least

continuous finite function) ϕ(x), x ∈ R
d, by the formula 〈δS, ϕ〉 =

∫

S ϕ(x)dσ, where the inte-

gral is the surface one of the first kind.

Under the perturbation of an isotropic α-stable stochastic process we understand the con-

struction of an operators semigroup (Tt)t>0, given on a set Cb

(

R
d
)

of continuous bounded

functions defined on R
d, with an infinitesimal generator of the form c∆α +

(

qδSν,∇β

)

,

where ∆α = −(−∆)
α
2 is the α-order fractional Laplacian, i.e. the operator defined by the

symbol (−|λ|α)λ∈Rd .

The problem of perturbation of Markov processes was and remains the focus of atten-

tion of many researchers. The diffusion case, that is, if α = 2, was considered (in much

more general situations) by M.I. Portenko (see [13, 17] and referenses there). The perturbation

operators have the form
(

a(·),∇
)

, where the function a(·) belongs to some Lp-space of func-

tions or is some generalized function of the delta function type. The case α < 2 was considered

in the work [1] by K. Bogdan and T. Jakubowski, who studied such a perturbation with the

function a from a Kato class. In [6], T. Jakubowski considered a fundamental solution of the

fractional diffusion equation (like written above) with a singular drift, i.e. the case of β = 1

and some singular function a. S.I. Podolynny and M.I. Portenko [12, 14–16] investigated this

perturbation with function from Lp. J.-U. Loebus and M.I. Portenko [7] perturbed the infinites-

imal generator of a one-dimensional symmetric α-stable process using the operator (qδ0, ∂α−1),

where ∂α−1 is a pseudo-differential operator of order α − 1. Results with α ∈ (1, 2) and per-

turbation operators of the type
(

a(·),∇α−1

)

can be found in [8, 9]. We studied the case of

perturbation operators
(

a(·),∇β

)

with a(·) with Lp and 0 < β < α in [2]. In this paper, fo-

cusing on the d-dimensional Euclidean space with d ≥ 2, we consider the cases 1 < α ≤ 2,

0 < β < α − 1 and the function a(·) which is of the delta-function type.

The next section is devoted to solving the perturbation equation. And in the last section,

we investigate some properties of the constructed perturbed semigroup of operators defined

on the space of continuous bounded functions.

1 Perturbation equations

Let us consider the equation

G(t, x, y) = g(t, x, y) +
∫ t

0
dτ
∫

S
g(t − τ, x, z)

(

ν(·),∇β

)

G(τ, ·, y)(z)q(z)dσz , (3)

with t > 0, x ∈ R
d, y ∈ R

d, which is called as the perturbation equation (see, for example,

[8, 9, 13, 17]). Another perturbation equation

G(t, x, y) = g(t, x, y) +
∫ t

0
dτ
∫

S
G(t − τ, x, z)

(

ν(·),∇β

)

g(τ, ·, y)(z)q(z) dσz ,
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is conjugate to (3). Solutions to equation (3) can be written as the function

G(t, x, y) = g(t, x, y) +
∫ t

0
dτ
∫

S
g(t − τ, x, z)υ(τ, z, y)q(z)dσz , (4)

given at t > 0, x ∈ R
d, y ∈ R

d, where the function υ(t, x, y) is defined by the equation

υ(t, x, y) = υ0(t, x, y) +
∫ t

0
dτ
∫

S
υ0(t − τ, x, z)υ(τ, z, y)q(z)dσz , t > 0, x ∈ R

d, y ∈ R
d, (5)

in which υ0(t, x, y) =
(

ν(·),∇β

)

g(t, ·, y)(x).

First of all, let us prove the correctness of the function G definition, that is, the existence

of a solution to equation (5) and the convergence of the integral in (4). Let us consider the

case of 1 < α < 2.

Lemma 1. If 0 < β < α − 1 < 1, then there is a unique solution to equation (5) in a class of

functions satisfying the inequality

∣

∣υ(t, x, y)
∣

∣ ≤ CT
1

(

t
1
α + |y − x|

)d+β
, t ∈ (0; T], x ∈ S, y ∈ R

d, (6)

for each T > 0 with some constant CT > 0 possibly depending on T.

Proof. Let us construct the solution to equation (5) using the method of successive approxi-

mations. Namely, consider the sequence of functions
(

υk(t, x, y)
)

, k = 0, 1, 2, . . . , given by the

recurrence relation

υk(t, x, y) =
∫ t

0
dτ
∫

S
υ0(t − τ, x, z)υk−1(τ, z, y)q(z)dσz , t > 0, x ∈ S, y ∈ R

d.

The existence of such a sequence follows from a well-known estimation (see [3])

∣

∣υ0(t, x, y)
∣

∣ ≤
C

(

t
1
α + |x − y|

)d+β
, t > 0, x ∈ S, y ∈ R

d, (7)

and the inequality (see [11, Lemma 2])
∫ t

0
dτ
∫

S

(t − τ)κ
(

(t − τ)
1
α + |x − z|

)d+k

τλ

(

τ
1
α + |z − y|

)d+l
dσz

≤ K

(

B
(

1 +κ −
k + 1

α
, 1 + λ

) t1+κ+λ− k+1
α

(

t
1
α + |y − x|

)d+l

+ B
(

1 + λ −
l + 1

α
, 1 +κ

) t1+κ+λ− l+1
α

(

t
1
α + |y − x|

)d+k

)

,

(8)

which is correct for all k > −1, l > −1, κ >
k+1

α − 1, λ >
k+1

α − 1 with a constant K > 0, which

depends only on d, k, l and the surface S.

Indeed, using the method of mathematical induction it is easy to prove that

∣

∣υk(t, x, y)
∣

∣ ≤ Rk
tk
(

1−
1+β

α

)

(

t
1
α + |x − y|

)d+β
, t > 0, x ∈ S, y ∈ R

d, (9)

where the constants Rk > 0 satisfy the recurrence relation (k = 0, 1, 2, . . . )

Rk = Rk−1C‖q‖K

(

B
(

1 −
1 + β

α
, 1 + (k − 1)

(

1 −
1 + β

α

))

+ B
(

k
(

1 −
1 + β

α

)

, 1
)

)
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with R0 = C (constant taken from the estimation υ0), and ‖q‖ = maxx∈S

∣

∣q(x)
∣

∣. Inequalities

(9) guarantee the good convergence of the series ∑
∞
k=0 υk(t, x, y). Namely, this series converges

uniformly in x ∈ S, y ∈ R
d and locally uniformly in t > 0. Let us denote its sum by υ(t, x, y)

with t > 0, x ∈ S, y ∈ R
d. It follows from (9) that the function υ satisfies estimation (6).

It is obvious that the function υ is a solution to equation (5) by its constructing. The unique-

ness of this solution in the class of functions that satisfy (6) follows from the fact that the dif-

ference w of every two such solutions satisfies the equation

w(t, x, y) =
∫ t

0
dτ
∫

S
υ0(t − τ, x, z)w(τ, z, y)q(z)dσz , t > 0, x ∈ S, y ∈ R

d.

Hence, using (7) and (8), we obtain

∣

∣w(t, x, y)
∣

∣ ≤ CTCk
∥

∥q(z)
∥

∥

k
Kk

(

B
(

1 −
1 + β

α
, 1 + (k − 1)

(

1 −
1 + β

α

))

+ B
(

k
(

1 −
1 + β

α

)

, 1
)

)

1
(

t
1
α + |x − y|

)d+β
,

for all k ∈ N, t ∈ (0, T], T > 0, x ∈ S, y ∈ R
d. This proves the identity w(t, x, y) ≡ 0. The

lemma is proven.

The convergence of the integral in (4) now follows easily from the statement of Lemma 1,

the well-known (see [3]) estimation

g(t, x, y) ≤
Ct

(

t
1
α + |x − y|

)d+α
, t > 0, x ∈ R

d, y ∈ R
d, (10)

and inequalities (8).

From equality (4), taking into account estimations (6), (10) and inequality (8), we obtain

∣

∣G(t, x, y)
∣

∣ ≤
Ct

(

t
1
α + |x − y|

)d+α
+ CT

(

t1− 1
α

(

t
1
α + |x − y|

)d+β
+

t2−
1+β

α

(

t
1
α + |x − y|

)d+α

)

≤ CT
t

β
α

(

t
1
α + |x − y|

)d+β
,

which is true for all t > 0, x ∈ R
d, y ∈ R

d, for each T > 0 with some constant CT > 0.

Consider the case of α = 2. The function g is now given by equation (2). Then

∇βg(t, ·, y)(x) =
1

2d+1π
d
2

Γ
(d + β + 1

2

)

1F̃1

(d + β + 1

2
, 1 +

d

2
;−

|x − y|2

4ct

) y − x

(ct)
d+β

2

, (11)

where 1F̃1(a, b, r) = 1
Γ(a) ∑

∞
k=0

Γ(a+k)
Γ(b+k)k!

rk is a regularized confluent hyper-geometric function

(see [4]).

It is known that limr→∞ 1F̃1(a, b;−r)ra = 1
Γ(b−a)

. Hence, taking into account representation

(11), we obtain the estimation

∣

∣∇βg(t, ·, y)(x)
∣

∣ ≤
Ct

1
2

(

t
1
2 + |x − y|

)d+β
, t > 0, x ∈ R

d, y ∈ R
d, (12)

where C > 0 is some constant. Estimation (12) is of the same type as (7). Therefore, the

statement analogous to Lemma 1 in the case of α = 2 is as follows.
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Lemma 2. For α = 2, 0 < β < 1, there is a unique solution to equation (5) in the class of

functions satisfying the inequality

∣

∣υ(t, x, y)
∣

∣ ≤ CT
t

1
2

(

t
1
2 + |x − y|

)d+β
, t ∈ (0; T], x ∈ S, y ∈ R

d, (13)

for each T > 0 with some constant CT > 0.

Proof. The proof of this statement is absolutely analogous as the proof of Lemma 1.

Let us use estimation (10), which holds in the case of α = 2, also. We obtain the following

inequalities

∣

∣G(t, x, y)
∣

∣ ≤
Ct

(

t
1
2 + |x − y|

)d+2
+ CT

(

t
(

t
1
2 + |x − y|

)d+β
+

t2−
β
2

(

t
1
2 + |x − y|

)d+2

)

≤ CT
t

β
2

(

t
1
2 + |x − y|

)d+β
,

valid for all t ∈ (0, T], x ∈ R
d, y ∈ R

d, and every T > 0.

Therefore we can claim that the function G(t, x, y) with t > 0, x ∈ R
d, y ∈ R

d is correctly

defined by equality (4). Moreover we have the following estimation

∣

∣G(t, x, y)
∣

∣ ≤ CT
t

β
α

(

t
1
α + |x − y|

)d+β
, t ∈ (0, T], x ∈ R

d, y ∈ R
d,

for each T > 0 with some constant CT > 0.

2 The operators semigroup

The set Cb(R
d) of continuous and bounded real-valued functions defined on R

d is a

polish space with respect to the norm ‖ϕ‖ = maxx∈Rd

∣

∣ϕ(x)
∣

∣. Let us define the family of

operators (Tt)t>0 by the equality

Tt ϕ(x) =
∫

Rd
ϕ(y)G(t, x, y)dy, t > 0, x ∈ R

d, ϕ ∈ Cb(R
d), (14)

where the function G is defined by the formula (4) for the case of α ∈ (1, 2], 0 < β < α− 1. The

main properties of the operators family (14) are considered in the following theorem.

Theorem 1. The following statements are fulfilled.

1. The operator Tt is linear and bounded on Cb

(

R
d
)

for any t > 0.

2. If ϕ(x) ≡ 1, then Tt ϕ(x) ≡ 1 for all t > 0.

3. The equality Ts+t = Ts ◦ Tt is valid for all s > 0 and t > 0.

4. The equality limt↓0 Tt ϕ(x) = ϕ(x) holds for every ϕ ∈ Cb

(

R
d
)

and for all x ∈ R
d.

5. The function U(t, x) = Tt ϕ(x) satisfies the equation

∂

∂t
U(t, x) = c∆αU(t, ·)(x) + q(x)δS(x)

(

ν(x),∇β

)

U(t, ·)(x), t > 0, x ∈ R
d, (15)

where the equality is understood in the generalized sense and the function ν(x), x ∈ S,

is extended by arbitrary way (keeping the equality |ν(x)| ≡ 1) on R
d.
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Proof. The linearity of operator Tt is evident. Let us prove its boundedness. If ϕ ∈ Cb

(

R
d
)

,

then using inequality (12) we can write

∣

∣Tt ϕ(x)
∣

∣ ≤
∫

Rd

∣

∣G(t, x, y)
∣

∣ dy‖ϕ‖ ≤ CT‖ϕ‖
∫

Rd

dy

(t1/α + |x − y|)d+β
t

β
α

≤ CT‖ϕ‖
∫

Rd

du

(1 + |u|)d+β
≤ ĈT‖ϕ‖

for all t ∈ [0, T] and any T > 0. Therefore the operators Tt are bounded and statement 1 is

proven.

The proof of statement 3 is a verbatim repetition of the corresponding statement proof

in [13], where the case of α = 2 and β = 1 is considered in a more general situation. The

following two facts are used in that proof. First, the family of operators
(

T
(0)
t

)

t≥0
, defined by

the equalities T
(0)
t ϕ(x) =

∫

Rd ϕ(y)g(t, x, y)dy, t > 0, x ∈ R
d, ϕ ∈ Cb(R

d), is a semigroup.

Second, the function Vt ϕ(x) =
∫

Rd ϕ(y)v(t, x, y)dy, t > 0, x ∈ R
d, is the unique solution to

the equation (see (5))

Vt ϕ(x) = V
(0)
t ϕ(x) +

∫ t

0
dτ
∫

S
v0(t − τ, x, z)q(z)Vτ ϕ(z)dσz, t > 0, x ∈ R

d, (16)

for every ϕ ∈ Cb

(

R
d
)

, where V
(0)
t ϕ(x) =

∫

Rd ϕ(y)v0(t, x, y)dy. This equation is actually

equation (5) which is multiplied by the function ϕ(y) and integrated with respect to y ∈ R
d.

These facts hold true in our case.

If ϕ(x) ≡ 1, then the function Vt ϕ(x), t > 0, x ∈ R
d, is the unique solution to equation (16)

with V
(0)
t ϕ(x) ≡ 0. This means that Vt ϕ(x) ≡ 0 and Tt ϕ(x) ≡ T

(0)
t ϕ(x) ≡ 1, i.e. statement 2 is

proven.

Let us prove statement 4. We have to take into account that limt↓0 T
(0)
t ϕ(x) = ϕ(x), x ∈ R

d,

and the following inequality
∣

∣Vt ϕ(x)
∣

∣ ≤ CT‖ϕ‖
∫

Rd

(

1 + |u|
)−d−β

du · t−
β
α hold for all α < 2,

t ∈ [0, T], x ∈ R
d and any T > 0. The last inequality is a consequence of estimation (6). If

α = 2 estimation (13) leads us to the inequality
∣

∣Vt ϕ(x)
∣

∣ ≤ CT‖ϕ‖
∫

Rd

(

1 + |u|
)−d−β

du · t
1−β

2 .

Therefore, using the inequality (see [11, Lemma 1])
∫

S g(t − τ, x, z)dσz ≤ CT t−1/α, t ∈ (0, T],

x ∈ R
d, we obtain

∣

∣

∣

∣

∫ t

0
dτ
∫

S
g(t − τ, x, z)q(z)Vτ ϕ(z)dσz

∣

∣

∣

∣

≤ CT‖ϕ‖‖q‖t1−
β+1

α , if α < 2,

or
∣

∣

∣

∣

∫ t

0
dτ
∫

S
g(t − τ, x, z)q(z)Vτ ϕ(z)dσz

∣

∣

∣

∣

≤ CT‖ϕ‖‖q‖t1−
β
2 , if α = 2.

Both of these expressions tend to 0 as t ↓ 0. This justifies statement 4.

It is well-known, that the function u(t, x) =
∫

Rd ϕ(y)g(t, x, y)dy, t > 0, x ∈ R
d, with any

ϕ ∈ Cb

(

R
d
)

satisfies the equality

∂

∂t
u(t, x) = c∆αu(t, ·)(x), t > 0, x ∈ R

d, (17)

and the initial condition u(0+, x) = ϕ(x), x ∈ R
d. Let us consider the function

u1(t, x) =
∫ t

0
dτ
∫

S
g(t − τ, x, z)q(z)Vτ ϕ(z)dσz (18)
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for ϕ ∈ Cb

(

R
d
)

and all t > 0, x ∈ R
d.

Since
∣

∣q(x)Vt ϕ(x)
∣

∣ ≤ CT‖q‖‖ϕ‖t−β/α (or
∣

∣q(x)Vt ϕ(x)
∣

∣ ≤ CT‖q‖‖ϕ‖t(1−β)/2 if α = 2),

t ∈ (0, T], x ∈ S for all T > 0 (see above), function (18) satisfies equation (17) for all t > 0

and x ∈ R
d \ S as a single-layer potential (see [10]). Moreover, as we saw above, u1(0+, x) ≡ 0.

Now, for any continuous finite function ψ(x), x ∈ R
d, we get

∫

Rd
ψ(x)

∂

∂t
u1(t, x, ϕ)dx = c

∫

Rd
ψ(x)dx

∫ t

0
dτ
∫

S
∆αg(t − τ, ·, z)(x)Vτ ϕ(z)q(z)dσz

+ lim
ε→0+

∫

Rd
ψ(x)dx

∫

S
g(ε, x, z)(x)Vτ ϕ(z)q(z)dσz

= c
∫

Rd
ψ(x)∆α

(

∫ t

0
dτ
∫

S
g(t − τ, ·, z)Vτ ϕ(z)q(z)dσz

)

(x)dx

+
∫

S
ψ(z)Vt ϕ(z)q(z)dσz

= c
∫

Rd
ψ(x)∆αu1(t, ·)(x)dx +

∫

S
ψ(z)Vt ϕ(z)q(z)dσz .

This is a consequence of the possibility of entering the operator ∆α under the integral sign and

of the equality
∫

Rd g(ε, x, z)ϕ(z) dz → ϕ(x) as ε → 0+ for every continuous bounded func-

tion ϕ. But the equality Vt ϕ(x) =
(

ν(x),∇β

)

U(t, ·)(x) is true for all t > 0, x ∈ S. Therefore,

equality (15) is proven.

Remark 1. Unfortunately, we cannot assert the non-negativity of the function G. Therefore, it

does not generate any stochastic Markov process, but only a pseudo-process.
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Бойко М.В., Осипчук М.М. Збурення iзотропного α-стiйкого випадкового процесу псевдоградiєнтом

з узагальненим коефiцiєнтом // Карпатськi матем. публ. — 2024. — Т.16, №1. — C. 53–60.

Стаття присвячена збуренню iзотропного α-стiйкого випадкового процесу в скiнченнови-

мiрному евклiдовому просторi оператором псевдоградiєнта, помноженим на дельта-функцiю

на гiперповерхнi. Це аналогiчно побудовi деякої мембрани у фазовому просторi. Побудова-

но напiвгрупу операторiв на просторi неперервних обмежених функцiй. Вона має iнфiнiте-

зимальний генератор (у деякому узагальненому розумiннi) c∆α + (qδSν,∇β), де c — деяка до-

датна стала, ∆α — дробовий лапласiан порядку α, δS — дельта-функцiя на гiперповерхнi S,

яка має нормальний вектор ν, q — деяка неперервна обмежена функцiя, ∇β — дробовий гра-

дiєнт (псевдоградiєнт), тобто псевдодиференцiйний оператор, визначений символом iλ|λ|β−1.

Порядок псевдоградiєнта менший, нiж α − 1. Дослiджено деякi властивостi отриманої напiв-

групи. Ця напiвгрупа визначає псевдопроцес.

Ключовi слова i фрази: α-стiйкий випадковий процес, збурення, псевдоградiєнт, напiвгрупа

операторiв, псевдопроцес.


