References
- Belinsky E.S. Approximation by a “floating” system of
exponentials on classes of periodic functions with bounded mixed
derivative. In: Studies in the Theory of Functions of Several Real
Variables, Yaroslav State Univ., Yaroslavl, 1988, 16–33. (in
Russian)
- Belinsky E.S. Estimates of entropy numbers and Gaussian measures
for classes of functions with bounded mixed derivative. J. Approx.
Theory 1998, 93, 114–127.
doi:10.1006/jath.1997.3157
- Besov O.V. Investigation of a class of function spaces in
connection with imbedding and extension theorems. Tr. Mat. Inst.
Steklova 1961, 60, 42–81. (in Russian)
- DeVore R.A., Temlyakov V.N. Nonlinear approximation by
trigonometric sums. J. Fourier Anal. Appl. 1995, 2
(1), 29–48. doi:10.1007/s00041-001-4021-8
- Düng D., Temlyakov V., Ullrich T. Hyperbolic cross approximation.
Adv. Courses Math. Birkhauser, CRM Barselona, 2018.
doi:10.1007/978-3-319-92240-9
- Dung D., Thanh V.Q. On nonlinear \(n\)-widths. Proc. Amer. Math. Soc.
1996, 124 (9), 2757–2765. doi:10.1090/S0002-9939-96-03337-0
- Fedunyk-Yaremchuk O.V., Hembars'kyi M.V., Hembars'ka S.B.
Approximative characteristics of the Nikol'skii-Besov-type classes
of periodic functions in the space \(B_{\infty,1}\). Carpathian Math. Publ.
2020, 12 (2), 376–391.
doi:10.15330/cmp.12.2.376-391
- Fedunyk-Yaremchuk O.V., Hembars'ka S.B. Best orthogonal
trigonometric approximations of the Nikol'skii-Besov-type classes of
periodic functions of one and several variables. Carpathian Math.
Publ. 2022, 14 (1), 171–184.
doi:10.15330/cmp.14.1.171-184
- Ismagilov R.S. Widths of sets in normed linear spaces and the
approximation of functions by trigonometric polynomials. Russian
Math. Surveys 1974, 29 (3), 169–186.
doi:10.1070/RM1974v029n03ABEH001287 (translation of Uspekhi Mat. Nauk
1974, 29 (3(177)), 161–178 (in Russian))
- Jiang Y., Yongping L. Average widths and optimal recovery of
multivariate Besov classes in \(L_p(\mathbb{R}^d)\). J. Approx. Theory
2000, 102 (1), 155–170. doi:10.1006/jath.1999.3384
- Kashin B.S., Temlyakov V.N. Best \(m\)-term approximations and the entropy of
sets in the space \(L_1\). Math.
Notes 1994, 56 (5-6), 1137–1157. doi:10.1007/BF02274662
(translation of Mat. Zametki 1994, 56 (5), 57–86. (in
Russian))
- Kolmogorov A.N. Über die beste Annaherung von Funktionen einer
gegebenen Funktionklasse. Ann. of Math.(2) 1936,
37 (1), 107–110. doi:10.2307/1968691
- Lizorkin P.I. Generalized Holder spaces \(B^{(r)}_{p,\theta}\) and their correlations
with the Sobolev spaces \(L^{(r)}_p\). Sibirsk. Mat. Zh. 1968,
9 (5), 1127–1152. (in Russian)
- Nikol'skii S.M. Inequalities for entire functions of finite
degree and their application in the theory of differentiable functions
of several variables. Tr. Mat. Inst. Steklova 1951,
38, 244–278. (in Russian)
- Romanyuk A.S. Approximation of classes of periodic functions in
several variables. Math. Notes 2002, 71 (1),
98–109. doi:10.1023/A:1013982425195 (translation of Mat. Zametki 2002,
71 (1), 109–121. doi:10.4213/mzm332 (in Russian))
- Romanyuk A.S. Bilinear and trigonometric approximations of
periodic functions of several variables of Besov classes \(B^{r}_{p,\theta}\). Izv. Math. 2006,
70 (2), 277–306. doi:10.1070/IM2006v070n02ABEH002313
(translation of Izv. Ross. Akad. Nauk Ser. Mat. 2006,
70 (2), 69–98. doi:10.4213/im558 (in Russian))
- Romanyuk A.S. Approximation of the isotropic classes \(\mathbf{B}^r_{p,\theta}\) of periodic
functions of several variables in the space \(L_q\). Approx. Theory of Functions and
Related Problems: Proc. Inst. Math. NAS Ukr. 2008, 5
(1), 263–278. (in Russian)
- Romanyuk A.S. Approximative characteristics of the isotropic
classes of periodic functions of many variables. Ukrainian Math. J.
2009, 61 (4), 613–626. doi:10.1007/s11253-009-0232-y
(translation of Ukraı̈n. Mat. Zh. 2009, 61 (4), 513–523.
(in Russian))
- Romanyuk A.S. Bilinear approximations and Kolmogorov widths of
periodic Besov classes. Theory of Operators, Differential
Equations, and the Theory of Functions: Proc. Inst. Math. NAS Ukr. 2009,
6 (1), 222–236. (in Russian)
- Romanyuk A.S. Approximate characteristics of classes of periodic
functions. Proc. of the Institute of Mathematics of the NAS of Ukraine,
Kiev, 2012, 93. (in Russian)
- Romanyuk A.S. Best trigonometric and bilinear approximations of
classes of functions of several variables. Math. Notes 2013,
94 (3), 379–391. doi:10.1134/S0001434613090095
(translation of Mat. Zametki 2013, 94 (3), 401–415.
doi:10.4213/mzm8892 (in Russian))
- Romanyuk A.S. Entropy numbers and widths for the classes \(B^{r}_{p,\theta}\) of periodic functions of
many variables. Ukrainian Math. J. 2017, 68 (10),
1620–1636. doi:10.1007/s11253-017-1315-9 (translation of Ukraı̈n. Mat.
Zh. 2016, 68 (10), 1403–1417. (in Russian))
- Romanyuk A.S., Romanyuk V.S. Trigonometric and orthoprojection
widths of classes of periodic functions of many variables.
Ukrainian Math. J. 2009, 61 (10), 1589–1609.
doi:10.1007/s11253-010-0300-3 (translation of Ukraı̈n. Mat. Zh. 2009,
61 (10), 1348–1366. (in Ukrainian))
- Romanyuk A.S., Romanyuk V.S. Approximating characteristics of the
classes of periodic multivariate functions in the space \(B_{\infty,1}\). Ukrainian Math. J.
2019, 71 (2), 308–321. doi:10.1007/s11253-019-01646-3
(translation of Ukraı̈n. Mat. Zh. 2019, 71 (2), 271–281.
(in Ukrainian))
- Romanyuk A.S., Romanyuk V.S. Estimation of some approximating
characteristics of the classes of periodic functions of one and many
variables. Ukrainian Math. J. 2020, 71 (8),
1257–1272. doi:10.1007/s11253-019-01711-x (translation of Ukraı̈n. Mat.
Zh. 2019, 71 (8), 1102–1115 (in Ukrainian))
- Romanyuk A.S., Romanyuk V.S. Approximative characteristics and
properties of operators of the best approximation of classes of
functions from the Sobolev and Nikol'skii-Besov spaces. J. Math.
Sci. (N.Y.) 2021, 252 (4), 508–525.
doi:10.1007/s10958-020-05177-2 (translation of Ukr. Mat. Visn. 2020,
17 (3), 372–395 (in Ukrainian))
- Romanyuk A.S., Yanchenko S.Ya. Approximation of the classes of
periodic functions of one and many variables from the Nikol'skii-Besov
and Sobolev spaces. Ukrainian Math. J. 2022, 74
(6), 967980. doi:10.1007/s11253-022-02110-5 (translation of Ukraı̈n. Mat.
Zh. 2022, 74 (6), 844–855. doi:10.37863/umzh.v74i6.7141
(in Ukrainian))
- Stasyuk S.A. Best \(m\)-term
trigonometric approximation of periodic functions of several variables
from Nikol'skii-Besov classes for small smoothness. J. Approx.
Theory 2014, 177, 1–16.
doi:10.1016/j.jat.2013.09.006
- Stechkin S.B. On absolute convergence of orthogonal series.
Dokl. Akad. Nauk SSSR 1955, 102 (2), 37–40. (in
Russian)
- Stepanyuk T.A. Order estimates of best orthogonal trigonometric
approximations of classes of infinitely differentiable functions.
In: Raigorodskii A., Rassias, M. (Eds.) Trigonometric Sums and Their
Applications. Springer, Cham., 2020, 273–287.
doi:10.1007/978-3-030-37904-9_13
- Temlyakov V.N. Estimates of the asymptotic characteristics of
classes of functions with bounded mixed derivative or difference.
Proc. Steklov Inst. Math. 1990, 189, 161–197
(translation of Tr. Mat. Inst. Steklova 1989, 189,
138–168. (in Russian))
- Temlyakov V.N. Approximation of periodic functions. Nova Sci. Publ.,
New York, 1993.
- Temlyakov V.N. Greedy algorithm and \(m\)-term trigonometric approximation.
Constr. Approx. 1998, 14 (4), 569–587.
doi:10.1007/s003659900090
- Temlyakov V.N. Multivariate approximation. Cambridge University
Press, 2018.
- Tikhomirov V.M. Widths of sets in function spaces and the theory
of best approximations. Russian Math. Surveys 1960,
15 (3), 75–111. doi:10.1070/RM1960v015n03ABEH004093
(translation of Uspekhi Mat. Nauk 1960, 15 (3(93)),
81–120. (in Russian))
- Trigub R.M., Belinsky E.S. Fourier Analysis and Approximation of
Functions. Kluwer Academic Publishers, Dordrecht, 2004.