References

  1. Abramowitz M., Stegun I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York, 1992.
  2. Cao J., Qi F., Du W.-S. Closed-form formulas for the \(n\)th derivative of the power-exponential function \(x^x\). Symmetry 2023, 15 (2), 323. doi:10.3390/sym15020323
  3. Charalambides C.A. Enumerative Combinatorics. CRC Press Series on Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, FL, 2002.
  4. Chen X.-Y., Wu L., Lim D., Qi F. Two identities and closed-form formulas for the Bernoulli numbers in terms of central factorial numbers of the second kind. Demonstr. Math. 2022, 55 (1), 822–830. doi:10.1515/dema-2022-0166
  5. Comtet L. Advanced Combinatorics: The Art of Finite and Infinite Expansions. D. Reidel Publishing Company, Dordrecht-Holland, Boston, USA, 1974. doi:10.1007/978-94-010-2196-8
  6. Dağlı M.S. Closed formulas and determinantal expressions for higher-order Bernoulli and Euler polynomials in terms of Stirling numbers. Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Math. RACSAM 2021, 115 (1), 32. doi:10.1007/s13398-020-00970-9
  7. Guo B.-N., Lim D., Qi F. Maclaurin’s series expansions for positive integer powers of inverse (hyperbolic) sine and tangent functions, closed-form formula of specific partial Bell polynomials, and series representation of generalized logsine function. Appl. Anal. Discrete Math. 2022, 16 (2), 427–466. doi:10.2298/AADM210401017G
  8. Guo B.-N., Lim D., Qi F. Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions. AIMS Math. 2021, 6 (7), 7494–7517. doi:10.3934/math.2021438
  9. Guo B.-N., Qi F. Increasing property and logarithmic convexity of two functions involving Riemann zeta function. arXiv:2201.06970 [math.NT]. doi:10.48550/arxiv.2201.06970
  10. Hu S., Kim M.-S. On Dirichlet’s lambda function. J. Math. Anal. Appl. 2019, 478 (2), 952–972. doi:10.1016/j.jmaa.2019.05.061
  11. Kruchinin V. Derivation of Bell polynomials of the second kind. arXiv:1104.5065 [math.CO]. doi:10.48550/arxiv.1104.5065
  12. Lim D., Qi F. Increasing property and logarithmic convexity of two functions involving Dirichlet eta function. J. Math. Inequal. 2022, 16 (2), 463–469. doi:10.7153/jmi-2022-16-33
  13. Qi F. A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. J. Comput. Appl. Math. 2019, 351, 1–5. doi:10.1016/j.cam.2018.10.049
  14. Qi F. On signs of certain Toeplitz-Hessenberg determinants whose elements involve Bernoulli numbers. Contrib. Discrete Math. 2023, 18 (2), 48–59. doi:10.55016/ojs/cdm.v18i2.73022
  15. Qi F. Taylor’s series expansions for real powers of two functions containing squares of inverse cosine function, closed-form formula for specific partial Bell polynomials, and series representations for real powers of Pi. Demonstr. Math. 2022, 55 (1), 710–736. doi:10.1515/dema-2022-0157
  16. Qi F., Lim D. Increasing property and logarithmic convexity of functions involving Dirichlet lambda function. Demonstr. Math. 2023, 56 (1), 20220243. doi:10.1515/dema-2022-0243
  17. Qi F., Yao Y.-H. Increasing property and logarithmic convexity concerning Dirichlet beta function, Euler numbers, and their ratios. Hacet. J. Math. Stat. 2023, 52 (1), 17–22. doi:10.15672/hujms.1099250
  18. Quaintance J., Gould H.W. Combinatorial Identities for Stirling Numbers. The unpublished notes of H.W. Gould. World Scientific Publishing Company, Singapore, 2016.
  19. Shuang Y., Guo B.-N., Qi F. Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios. Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Math. RACSAM 2021, 115 (3), 135. doi:10.1007/s13398-021-01071-x
  20. Temme N.M. Special Functions: An Introduction to Classical Functions of Mathematical Physics. A Wiley-Interscience Publ., John Wiley & Sons Inc., New York, 1996. doi:10.1002/9781118032572