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Generalized selfadjointness of operators generated by Jacobi
Hermitian matrices

Ivasiuk I.Ya.

We investigate selfadjointness in sense of Hilbert space rigging and related questions. We proved
that this generalized selfadjointness of some operator, which acts from positive into negative space,
is equivalent to ordinary selfadjointness of some modification of this operator in basic (“zero”
space.

Also we consider operators generated by classical and generalized Jacobi Hermitian matrices,
their selfadjointness and generalized selfadjointness in sense of weight Hilbert space rigging. Some
sufficient conditions of generalized selfadjointness of these operators are proved. Using obtained
results we explaine possibility of construction of example of gereralized selfadjoint opearator which
is not selfadjoint in classical sence.
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1 Introduction

This article appears from one problem, which was described years ago by Yu.M. Bere-
zansky. Investigating this problem we obtained results which are connected to notion of
Hilbert space rigging. We consider operators acting in this chain and their selfadjointness in
the sense of this construction, which we call generalized selfadjointness. Therefore, the main
goal of this article is to explain more clearly the notion of generalized selfadjointness.

In the Section 2, we consider connection between generalized and ordinary selfadjointness.
There we prove that instead of investigation of generalized selfadjointness of some operator it
is sufficient to investigate ordinary selfadjointness of some new operator, which is a modifica-
tion of given one.

In the Section 3, we consider operators generated by classical Jacobi matrix in space ¢, of
squared summable sequences and in weight Hilbert rigging of ¢,. Here we transfer results of
Section 2 on this partial case. Also we obtain a few interesting results about: sufficient con-
ditions of nonselfadjointness of operator generated by classical Jacobi matrix in ¢, sufficient
conditions of generalized selfadjointness of operator generated by classical Jacobi matrix in
weight Hilbert rigging of ¢, and connection between generalized and ordinary selfadjointness
of these operators.

The Section 4 is dedicated to an example, which was considered in article [3]. It was the
example of operator which is selfadjoint in ordinary sense but in the same time it is not gener-
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alized selfadjoint. As it was later noticed by Yu. M. Berezanskiy that example was constructed
with a mistake. In this section, we show that such example can not be constructed or, in other
words, such situation is not possible.

In the Section 5, we consider operator generated by generalized Jacobi matrix, i.e. three-
diagonal block Jacobi type matrix. As it provided to be, in this case similar situation to de-
scribed one in Section 3 takes place.

2 Connection between ordinary and generalized selfadjointness

Let us consider complex Hilbert space rigging
H_ D HoD H+. (1)

The construction of this space was described in [2]. We will not repeat all the procedure of
construction. But we just admit that 7 is dense in H as subspace and |ul|y, < |lully,,
ue Hy.

Let J, J, I be some isometric operators, which are constructed in specific way with respect
to (1). In particular, I 1 Hy is the adjoint operator to the operator of embedding of H, — Ho.
For these operators following equalities take place:

J:H-—Ho, D(J)=H-,R(J)=Ho

]:H0—>H+, D(])IH(),R(])ZH+}

I:H_ — 7‘[+, D(I) = /Hf,R(I) = HJr;
1=]J.

(2)

Let us consider an operator A : H, — H_ with a dense domain D(A).

For A it is easy to define an adjoint operator A" : H, — H_ [3]. Let ¢ € H be such that
the functional ¢ — (A¢, )y, € C, which is defined on D(A), is continuous and, therefore,
has a representation (A¢, )y, = (¢, ¢ )y, ¢~ € H_. Then such ¢ is an element of the do-
main D(A™) of an operator AT and ATy := ¢ . If Hy = H,, then this is classical definition
of adjoint operator.

Definition 1. Operator A : H — H _ is called generalized Hermitian, i.e. Hermitian in sense
of rigging (1), if (Au,v)y, = (u, Av)y,, u,v € D(A).

Definition 2. Operator A : H, — H_ is called generalized selfadjoint, i.e. selfadjoint in sense
of rigging (1), if A = A™.

In paper [3] it was proved the following result.

Proposition 1. Operator A : H, — H_ is generalized selfadjoint if and only if the operator
IA : H — H is selfadjoint, i.e. if IA is selfadjoint in a classical sense as an operator in H 4.

But it is more convenient to check a selfadjointness in space H. So, we prove the following
theorem.
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Theorem 1. Operator A : H, — H_ is generalized selfadjoint if and only if the operator
JA] : Ho — Hy is selfadjoint.

Proof. Necessity. Let A : H, — H_ be a generalized selfadjoint operator. Let us prove that the
operator JA] is Hermitian. Since J* = | (see [2]), we get

(JA]ffg)Ho = (A]f/]g)’Ho = (]fIA]g)Ho = (A]gl]f)?{o

= (JAJg fly, = (fJAISn,,  f,8 € DJA]).

Thus, for selfadjointness of JA] it is sufficient to show that defect numbers of this operator are
(0,0), or, what is the same, a defect subspace is equal to {0}.

Since A is generalized selfadjoint operator and Proposition 1 holds true, for any fixed
z € C\Rand for all u € D(A) from ((IA — z1)u,v) ., = 0it follows that v = 0, i.e. de-
fect subspace of IA consist of {0}, where v € H and 1 is identity operator.

Forsomez € C\ R, g € Hpand for all f € D(JAJ) we have

0= (UAT = 20)f,8), = (I TUAT=20)f,Tg)
= (JOA] = 20)f,Jg) 5. = (1A =21)]f,Jg),. -

Since Jf € D(A) and Jg € H, from above mentioned and the last equality it follows that
Jg = 0. Since operator | is isometric, then ¢ = 0. So, the defect subspace of operator JA]
consists only of element 0 and, therefore, JA] is selfadjoint.

Sufficiency. Let JA] : Ho — H is selfadjoint. Let us show that IA : H, — H is selfadjoint.

(1A, 0)3, = <]’1IAu,]’1v>H — (]’1]]A]]’1u,]’1v)?{

0 0

_ (]_1u,]A]]_10)H0 — <]_1u,]_1]]Av)H0 = (1,1A0)y,,  u,0€ D(A).

Since IA is Hermitian, it is sufficient to show that its defect space is equal to {0}. Let us do it
in the same way as for necessity.

Since JA] is selfadjoint, from ((JA] —z1)f,g),, = 0 it follows that ¢ = 0, where
z€ C\R,f € D(JAJ]),g € Hp. Forz € C\R,u € D(A) and v € H the following equality
takes place

0= ((IA —z1)u, U)H+ = <]’1(IA - zl)u,]’lv) = <(]A] - zl)]’lu,]’lv)

Ho HO )

Since ] "'u € D(JAJ) and | ~'v € Ho, we have that ] "o = 0. From the equality
1 2
0= (10T "), = @0, = ol

it follows that v = 0. Thus, IA : Hy — H is selfadjoint. Therefore from Proposition 1 it
follows that the operator A : H — H_ is generalized selfadjoint. O
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3 Ordinary and generalized selfadjointness of operators generated by clas-
sical Jacobi matrix

Let us consider the Hilbert space rigging

6(p™") D D b(p), (3)

where (5(p) is the space of complex sequences u = (ug, U1, . ..) with scalar product

(u,v)gz(p) = Z UnOppn, U, € la(p)
n=0

and weight p = (pu)5_y, Pn > 1, n € Ny := {0,1,...}. In this case the operator | acts in the
following way
bours Jucly(p): (Ju)n = p, Y un.

The operator J : £, (p~!) — ¢, acts in the same way on elements of space ¢, (p~1).
Let us consider classical Hermitian Jacobi matrix of view

boCOOOO
a0b10100

"0 a by o O , bhn€R, a,=cy,>0,n€Ny. (4)

Consider an operator A/, which acts on finite sequences f € /g, as follows

(A/f)n = (Af)n = anflfnfl +bnfn +ﬂnfn+1, f71 =0, VnelN,.

Operator A’ : lg, — (g, is Hermitian. Let us denote by A : ¢, — {; the closure of
operator A’ in £,. Also we can define an operator A : {,(p) — £ (p~!) as closure of operator
A" : by(p) — €5 (p~1), which we understand as an operator from ¢, (p) to > (p~1).

In what follows we will investigate generalized selfadjointness of operator A and its con-
nection with selfadjointness of operator .A. Since the theory of classical Jacobi matrices is well
known, then at first we will briefly characterize selfadjointness of A : {, — £5.

Let us consider for some complex number z the following recurrence relation

(AP(2)), = an-1Py-1(2) + buPu(2) + anPuy1(z) = zPs(z), n € Ny,

where P(z) = (Py(z), Pi(z), ... ) is such a sequence of polynomials that P_1(z) = 0, Py(z) = 1.
The following theorem gives necessary and sufficient conditions of selfadjointness of A.

Proposition 2. Operator A : {; — (5 is selfadjoint if and only if for allz € C \ R the following
equality

Y. |Pu(z)|* = o0
n=0
holds.

In the paper [6] it was formulated a few sufficient conditions of selfadjointness of operator
A (see, also, [1]). We consider some of them.
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Proposition 3. The operator A : {, — {, is selfadjoint if any one of the following conditions
holds:

o 1
a) Za—:
n=0

n+1
Anlp41

b) Z

:OO,'

¢) liminfmax {ag,ay,...,a,_1}n"! < oo;
n—o0

d) a,_1+Db,+a, <C < oo foralln € Ny, where C is some constant and a_1 = 0.

In [1], it was proved the following sufficient conditions of nonselfadjointness of an operator
A: Ez — fz.

Proposition 4. Let |b,| < ¢ = const,n € INy. Let the inequality a,_1a,+1 < a2 holds, starting

from some n € Ny and let Z - < co. Then the operator A : £, — {, is not selfadjoint.
0"

Let us prove some generalization of this theorem.

Theorem 2. Let the inequality a, 1a,,1 < a> holds, starting from some n € N and let

o
Y 1+‘b”‘ < 0. Then the operator A : ¢, — {5 is not selfadjoint.
n=0 fin

Proof. From Proposition 4 it follows that it is sufficient to show that A : ¢, —> ¢, is not selfad-

joint if starting from some n we have a,,_1a,+1 < a2, |by| — o0,n — oo and Z ‘2:' < oo.
n=0

Let ny € N is such that a, 14,1 < a2 for all n > ng. The operator A : £, — ¢, is not

selfadjoint if for some z € C\ R we have Y |P,(z) }2 < oo. From the theorem conditions it
n=0

follow that it is sufficient to show that ‘Pn (z)} < \/% forall n > ny, wheren; € Nand C > 0
is some constant.

Let us suppose that for all n such that n; < n < m the inequality \/a,|P,(z)| < Cy holds,
where C,, > 0 is some sequence of constants and m > max {ng,n1} + 1 =: my. Now we will
select Cy,41. Since Py11(z) = i(z — by)Pu(z) — a;;l—”:le,l(z), for any fixed z € C \ R the
following inequality

V| P (3)] € Yz = b | Pu(2) + 7“”;’”1 P (2)]

\/a Ay
S (k—f—‘bm’) I’I”H’l m—1
Am vV Am—1%m
A Am+1%m—1
+ %\mm,l ‘mel(z)‘
m

k + [bm| )
<Cp |1+ ——
o m< VAnm—10m
k- |bm| )

takes place, where k > 0 is some constant. Consider C,, of view C,,41 := Cy, < + T )

Van|Pn(2)]

m € INg. Therefore, for all m > mg we get

m-1 k + |by| * k + by
Cn=C 1+7>§C <1+7>::c.
" o nl:—[mo ( vV An—14n o ,g v An—14n
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Now, we will show that C < oo, or, in other words, the product is convergent, and this will end
the proof. Indeed, since

b _ b < p—1 |bn] <. < ‘ﬂ@l
an—1 Ap—1 an An—2 an ap an

the following inequality

N . - - 1/2
Z k + |by| Szz by <2 Z |bn| Z |bn| < o
n=1Van—-14n An—10n n=1 -1 p,=1 fn

n=1
holds. Therefore, C < oo and the theorem is proved. O

Now we will try to explain the situation about generalized selfadjointness of an operator
A : ly(p) = £> (p~1). From Theorem 1 it follows that generalized selfadjointness of the oper-
ator A : £(p) — ¢, (p~!) is equivalent to selfadjointness of the operator JA] : £, — (.

Let us consider the operator JA]. Let f € D(JA]). Then for all n € Ny we have

OATF)n = UATn = P (@10 P faor + b2 fu 4 aup, 1 fo)

(5)
= an 1P, 00 P fat A+ bupy o anpy P fa
where f_; := 0. Let us consider the Jacobi matrix of type (4), namely
bopg"  aopy p 0 0 0
4 — aopy 2y bip; ! aypy 2py 12 0 0 ... ©
p= 0 aypy Y 2py 12 V2,12 g |-

Ps bopy ! axp, ' p

This matrix generates an operator in ¢ in the following way. Let A; : iin — Cgin be an operator
in ¢, which acts on finite vectors as follows A; f =Apf, f € lgin. Letus denoteby A, : £o — {3
the closure of operator A}, in £5.

The following results take place.

Theorem 3. Operators JA] : £, — { and A, : l» — (> are equal.

Proof. From construction of A, and (5) it follows that operators JA] and A, act in the same
way on their domains. So, it is sufficient to show that domains of these operators are equal.

At first, we consider view of these domains. Note that D(JA]) = {f € £> : Jf € D(A)}.
From the construction of the operators A and A, it follows that D(A) = /g, Uy and
D(Ap) = {fin Uy, where

0Oy := {u € ez(p) \ eﬁn tAu € €2<p,1)},
0y = {f €l \ lin : Apf S fz}.
Now, let us show that D(JA]) = D(A,).

Let f € D(Ap). If f € lgp, then Jf € lg,. So, f € JA]. Let f € (. Since f € £\ Ugin,
Jf € €2(p) \ Lein. Show that AJu € £, (p~1).
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We have
go [N 20 w1 () a1+ ba(Jf)n + aa(Jfusr | P
2
B Z fn— 1pn 1 f” 1+ by Pn /2fn+a”pn+1 f”Jrl‘ 7;1 (7)
= 1 [(Apff* <o

Therefore f € D(JA]).

Now, let u € D(JAJ). Let Ju € lgn. So, u € L4, and, therefore, u € D(A,). Let Ju € (). So,
Ju € b(p) \ b and AJu € £, (p~1). Thus, u € €, \ U5, and from (7) it follows that A,u € f.
Therefore, u € D(A,). O

Theorem 4. For any Jacobi matrix A of view (4) there exists a weight p = (py);_, such that
the operator A : {5(p) — €, (p~1) is generalized selfadjoint.

Proof. According to Theorem 1 and Theorem 3 it is sufficient to show that the operator
Ay 2 by — {5 is selfadjoint.
Let the weight p = (p,)5—, is such that p, := a,_1 + a, + 1. Then for all n € INy we have

1 (g1 +an+ 1) (a, + ay1 +1)V?
12172 > 1.
nPn " Pni n
So, ¥ W = oo, and therefore, from condition a) of Proposition 3 it follows that
n=0 “nrn n+1
Ap : ly — { is selfadjoint. a

Remark 1. From Theorem 4 we can make the following conclusion: in spite of situation with
selfadjointness of operator A : {; — {, ie. either A is selfadjoint or not (see, Proposition
3 and Theorem 2), there exists Hilbert space rigging (3), such that A : l,(p) — { (p~!) is
generalized selfadjoint.

Theorem 5. Let A be an arbitrary matrix of the form (4). Then there exists a weight
p = (Pn);—o 0L in other words, there exists a Hilbert space rigging (3), such that the operator
A : l(p) = £ (p 1) is bounded and generalized selfadjoint, and D(A) = (>(p).

Proof. For any f € (g, we get
}(Aﬁn}zp;l = lan—1fu-1+bupn + anPn+1|2 Pt ®)
< ay P P faca PPt + 0502  fal® oo+ gy ol ot P P,
Let u € {(p). Then Z |un|2pn < oo. Let us consider a weight p = (pu)>_,, such that
Pn = ay_1+ |bu| +an + 1 n € INg. Thus, from (8) we obtain

| Aullg, (1) = Z\ (Auw)a[*py!

<Y a ip tipn P pa-1 + anpnzlunlzpwr an T [T b
n=0 n=0 n=0

- 2
Z | |*pn = 3 1],y < 00
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From this inequality it follows that A : £5(p) — ¢, (p~!) is bounded and D(A) = £>(p).
Generalized selfadjointness of the operator A can be proved in the same way as in Theo-

rem 4, because the weight considered in the theorem also satisfies the conditions of previous

theorem. O

Theorem 6. The operator A : {>(p) — € (p~?) is generalized selfadjoint if any one of condi-
tions a), b) or c) of Proposition 3 holds.

Proof. From Theorems 1 and 3 it follows that an operator A is generalized selfadjoint if and
only if an operator A, is selfadjoint. We will use this fact in the proof.
1 1

oo
So, let a) takes place. Since —5— > -, we get Y. ——5—5 = oo. Therefore, from
npPn Pus1 " n=0 nPn n+1

condition a) of Proposition 3 and above mentioned it follows that A : f,(p) — 6 (p7!) is
generalized selfadjoint.
Let now b) holds true. Since

1/2 1/2 ,1/2 1/2
bn+1 Pn pn+1pn+1pn+2 > - bn+1 o
- - _wl
n—=0 | nn+1 Pn+1 n—=0 | nn+1

then from condition b) of Proposition 3 it follows that A, is selfadjoint.
Let ¢) is fulfilled. Since

2 1/2 -1/2_-1/2

-1/2,-1/2 _ -1/2 —
max{aopo Y O S et 8 }<max{a0,a1,...,an_1},

then from condition c) of Proposition 3 it follows that A, : £, — /5 is selfadjoint and, therefore,
A : l(p) = £ (p7 1) is generalized selfadjoint. O

Remark 2. From Theorem 6 it follows that sufficient conditions a) — ¢) from Proposition 3 of
selfadjointness of an operator A are also sufficient conditions for an operator A generalized
selfadjointness.

4 About one example

In article [3], authors were trying to construct an example of the following type (it was
constructed there but it contains a mistake, which was admitted later by the authors): in some
Hilbert space rigging (1) they were looking for an operator A : H, — H_ with dense domain
D(A) in H4, which action in space H, is selfadjoint, i.e. A : Ho — Hy is selfadjoint, but the
operator A : H, — H_ is not generalized selfadjoint. Let us show that such an example can
not be constructed.

At first, we consider an example.

Example 1. Let us consider Hilbert space rigging (3) with weight p = (pn)o_o, pn :=n+1,
n € Ny. In this chain, let us consider an operator A : {5(p) — ¢, (p~!), constructed from the
matrix (4) by the procedure described in Section 3, namely

. . (n+1)5/2
an .:Tl+1, bn.: —m, nZO
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—3/2

Also let us consider a sequence u = (uy )5, Un = (n +1) ,n > 0, which is the element of

l3(p). The operator A acts on this element in following manner:

(Au)p = 0;

(Au), =n-n"%2 - (n+1)>

m(n*'l)f?’/z—l—(n+1)(n—|—2)*3/2:nfl/z, n>1.

Thus, u € D(A), because

JAul oy = L[y = L ey =1

n=0 n=1

[ee)
Also, Au does not belong to ¢,, because HAuH%2 =Y L=oco
n=1

From this example the next statement follows.

Proposition 5. Let A : H, — H_ be an operator in some Hilbert space rigging (1) with
domain D(A) dense in H. The operator A : H, — H_ can not be considered in sense
A : Hy — Hp in general case, i.e. its considering in sense of action in H is not correct.

Theorem 7. Let A : H; — H_ be an operator in some Hilbert space rigging (1) with do-
main D(A) dense in H, and with range of values R(A) belonging to Hy. If the operator
A : Ho — Ho, i.e. the operator A in sense of action in H, is selfadjoint, then the operator
A : Hy — H_ is generalized selfadjoint.

Proof. Let us denote for clearness operator A : Hy — Ho, which we understand as an operator
in Ho, by A : Ho — Ho. So, A and A are the same operators but we understand them in
different action sense.

Since A is selfadjoint, D(AA) = D(A) and they act in the same way on their domains, the
operator A is generalized Hermitian. Therefore, A C A™.

The definition implies that domain D (A™) of operator A" consists of such ¥ € H that
the functional ¢ — (A@,¥)s, ¢ € D(A), is continuous. On the other hand, the domain
D (A*) of operator A* consists of such g € H that the functional f — (Af,¢)w,, f € D(A),
is continuous. Since D(A) = D(A) and Hy D Hy, we get D (A*) D D (A™). Therefore,
AT C A* = A= A.So, A is generalized selfadjoint. O

So, from Proposition 5 and Theorem 7 it follows that an example described at the beginning
of this section can not be constructed.

Also, it is necessary to admit that earlier we tried to construct such an example in terms of
differentiation operator —i % in weight Hilbert space rigging of L?(IR,dx). We could not con-
struct such example at that time (as now we know it can not be constructed), but all obtained
in that process results were published in article [5]. The main result of that paper states that an
operator, which is generated by —i %, is generalized selfadjoint as soon as respective operator

is selfadjoint. Thus, the article [5] corroborate obtained result.
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5 Ordinary and generalized selfadjointness of operators generated by gen-
eralized Jacobi Hermitian matrix
Now, we consider a generalized selfadjointness of generalized Jacobi Hermitian matrices

introduced in [4].
Let us consider complex Hilbert space

L=H@®H &H® -, H=C", icNy,,

[ee) n
of vectors I 3 f = (fu)$,, where f, = (fn,.]-);?zo € Hy, f = Zo Y fusjen;j (here ey, n,j € Ny,
n=0j=0

are elements of standard basis in 1) with scalar product

(o]

(frg)lz = Z(fnrgn)Hn} f.g €l

n=0

Consider the following Hilbert space rigging of type (1)
L(p~') DL D hip), 9)

where 1;(p) is space of infinite vectors with scalar product

(9]

(f+ () = Y fu&)m,pni f.8 € La(p),

n=0
with a given weight p = (py)5—o, pn > 1. In this case the operator | acts as follows
Lour Jucl(p): (Juu = p, " ?u,.

The operator J : 1 (p~!) — L, acts in the same way on elements of space I, (p~!).
Let us consider in the space 1, a Hermitian matrix G = (Gj,k)ﬁ:() with an operator-valued

complex elements G;x: Hy = Hj, Gjx = (Gj,k;a,/a) i:O];:O’ of the following block Jacobi structure

b() Co o 0 ...
ap by ¢4 0 ... a; = Git,i - Hi = Hisy,
G = 0 b ,  Wwhere bi = Gi,i :H; — H;, (10)
a > Cy ...
. ¢i = Giiy1: Hiy1 — H;.
For Hermitianess of matrix G it is necessary and sufficient that b; = b}, a; = cj, where

“x” denotes adjoint to matrix.
Let f € 1. Then the matrix G acts on f in the following manner

(Gf)n = ﬂn—lfn—l + bnfn + Cnfn+1/ with f_1 =0. (11)

Let us consider an operator G’ : 1, — lg,, which acts on finite sequences f € 1y, asin (11),
ie. G'f = Gf, f € lg,. Operator G’ is Hermitian. So, we can consider operator G : 1, — 1,
which is equal to closure of the operator G’ in 1,. In the same way as in Section 3 we can also
define an operator G : I,(p) = L(p~1).

Let us consider for some complex number z the recurrence relation

(GQD(Z))n = A 19n—1(2) + bn@u(z) + cu@ni1(z) = z9u(z), n € Ny, (12)

where ¢(z) = (¢n(2))50, ¢n(2) € Hy, is a such sequence that ¢_;(z) := 0. In article [4],
there was considered problem of selfadjointness of the operator G and there were obtained the
following results.
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Proposition 6. Operator G is selfadjoint if and only if for any non-zero solution of system (12)

the condition of: ||(pn(z)||§{ = oo holds, wherez € C \ R.
n=0 !

[ee)
Proposition 7. Let a matrix G be such that Y. (||an,ysq + llCnllii1) = oo, where |||
n=0 ’ ’ '

defines norm of (I 4+ 1) x (k+ 1)-matrix or respective operator which acts from H to H;. Then
operator G is selfadjoint.

The situation about generalized selfadjointness of G is similar to described one in Section 3.
So, from Theorem 1 it follows that generalized selfadjointness of G : Ly(p) — L (p7!) is
equivalent to selfadjointness of operator JG]J : I, — 1, where J and | are respective operators
for Hilbert space rigging (9). Operator JG] acts as follows

JGJf)n=UG]f)n = p;1/2 <‘1n—1p;;}{2fn—1 + bnpﬁl/zfn + CnP;i{zan)

= an—lpriézp;l/zfn—l + bnpglfn + Cnpgl/ngi{zfnﬂf
where f € D(JGJ) and f_1 := 0. Let us consider generalized Jacobi matrix of type (10) of view

-1/2_.-1/2 - -1/2..-1/2
o _ | aorg Pt bipy'apy P 0 0
p= 0 ~1/2,-1/2 “1/2,-1/2
2 3

a1py ' 2p; bopy ' copy Pp

In the same way as in Section 3 we can generate operator G, : 1 — 1, by matrix G,. Similarly
to the proof of Theorem 3 it is easy to show that the following its analog takes place.

Theorem 8. Operators JG] : 1 — 1, and Gy, : I, — 1, are equal.
Also, some other analogs of Theorems 4 and 5 take place.

Theorem 9. For any generalized Jacobi matrix G of view (10) there exists a weight p = (pn)5_,
such that the operator G : 1,(p) — 1, (p™!) is generalized selfadjoint.

Proof. Let the weight p = (pn)5_, be such that

Pn = ”aﬂlenfl;n + ||an||n;n+1 + chfl”n;nfl + ||C?l||n+1;n +1, nec NO'
Proceeding in the same way as in Theorem 4, from Proposition 7 we obtain that G is gen-

eralized selfadjoint. O

Theorem 10. Let G be an arbitrary matrix of the form (10). Then there exists a Hilbert space
rigging (9), such that G : l,(p) — fl(p~1) is bounded and generalized selfadjoint and

D(G) =L (p).
Proof. The proof of this theorem is similar to proof of Theorem 5, if we consider a weight
p = (pn)$_,, such that
P = llan—1lly—1;n + @nllyr + 1onlln + Nen-1llyn—1 +lenllnrn +1, n € No.
O

Remark 3. Let us notice that the sufficient condition of the selfadjointness of the operator G
from Proposition 7 is also sufficient for the generalized selfadjointness of G.
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AOCAIAXYETBCST CAMOCIIPSIKEHICTD Y CeHCi riAbOepTOBOTO OCHAIIIEHHST i TI0B’SI3aHi 3 IM IMMTAHHSI.
AoBeaAeHO, IO 15l y3araAbHeHa CaMOCIPSDKEHICTh AOBIABHOTO OMepaTopa, sIKMI Ai€ 3 TO3UTUBHOTO
B HEraTMBHMIA IPOCTIp, eKBiBaA€HTHA 3BMYaliHili CaMOCHPSIXEHOCTi MeBHUM UMHOM IIepeTBOPEHOro
LIBOTO OmepaTopa y 6asoBomy (“HyAbOBOMY”) IIPOCTOPI.

TaxoX pO3rAsIHYTO oIepaTopy MOPOAXKEH] KAQCHMUHMMI i y3aTaAbHEeHMMI SIKOOiEBMMI epMiTO-
BUMM MaTPUIISIMM, IXHsI CAMOCIIPSIXKEHICTbD i y3araabHeHa CaMOCITPSIKeHICTh B CEHCi BaroBOTO TiAb-
bepToBoOro ocHarreHHs. AOBEeAEHO ITeBHi AOCTaTHi YMOBM y3araAbHEHOI CaMOCHPSIKEHOCTI IIMX OTTe-
paTopis. BukopucTosyroun oTpuMaHi pe3yAbTaTy IOSICHEHO MOXAUBICTD TOGYAOBY IIPUKAAAY y3a-
TaAbHEHOI CAMOCITPSIKEHOCTI OIlepaTopa, SIKUii He CaMOCIIPSIKEHWIA B KAQCMYHOMY CEeHCi.

Kntouosi cnoea i ¢ppasu: OCHAIIEHHS IiABOEPTOBOrO IPOCTOPY, EPMITOBMIL OIlEPAaTOp, CAaMOCIIpSI-
>KEHWIT OTlepaTop, TPOXAiaroHaAbHa 6AOYHA MaTPUIIST, MaTpuLIs SIKO6i.



