References
- Stark É.L. The complete asymptotic expansion for the measure of
approximation of Abel-Poisson's singular integral for Lip 1. Math.
Notes of the Academy of Sciences of the USSR 1973, 13
(1), 14–18. doi:10.1007/BF01093622
- Abdullayev F.G., Kharkevych Yu.I. Approximation of the classes
\(C^{\psi}_{\beta}H^{\alpha}\) by
biharmonic Poisson integrals. Ukrainian Math. J. 2020,
72 (1), 21–38. doi:10.1007/s11253-020-01761-6
- Stepanets A.I. Uniform Approximations by Trigonometric Polynomials.
Naukova Dumka, Kiev, 1981. (in Russian)
- Natanson I.P. On the order of approximation of a continuous \(2\pi\)–periodic function by its Poisson
integral. Dokl. Akad. Nauk SSSR 1950, 72 (1),
11–14. (in Russian)
- Timan A.F. Sharp estimate for a remainder in the approximation of
periodic differentiable functions by Poisson integrals. Dokl. Akad.
Nauk SSSR 1950, 74 (1), 17–20. (in Russian)
- Kal'chuk I.V., Kharkevych Yu.I., Pozharska K.V. Asymptotics of
Approximation of Functions by Conjugate Poisson Integrals.
Carpathian Math. Publ. 2020, 12 (1), 138–147.
doi:10.15330/cmp.12.1.138-147
- Zhyhallo K.M., Kharkevych Yu.I. Complete asymptotics of the
deviation of a class of differentiable functions from the set of their
harmonic Poisson integrals. Ukrainian Math. J. 2002,
54 (1), 51–63. doi:10.1023/A:1019789402502
- Kharkevych Yu.I. Asymptotic expansions of upper bounds of
deviations of functions of class \(W^r\) from their generalized Poisson
integrals. J. Automat. Inf. Scien. 2018, 50 (8),
38–49. doi:10.1615/JAutomatInfScien.v50.i8.40
- Baskakov V.A. Some properties of operators of Abel-Poisson
type. Math. Notes of the Academy of Sciences of the USSR 1975,
17 (2), 101–107. doi:10.1007/BF01161864
- Kal'chuk I., Kharkevych Y. Approximation Properties of the
Generalized Abel-Poisson Integrals on the Weyl-Nagy Classes. Axioms
2022, 11 (4), 161. doi:10.3390/axioms11040161
- Zhyhallo T.V., Kharkevych Yu.I. On approximation of functions
from the class \(L_{\beta ,1}^{\psi }\)
by the Abel-Poisson integrals in the integral metric. Carpathian
Math. Publ. 2022, 14 (1), 223–229.
doi:10.15330/cmp.14.1.223-229
- Kal'chuk I.V., Kharkevych Yu.I. Approximation of the classes \(W_{\beta, \infty}^{r}\) by generalized
Abel-Poisson integrals. Ukrainian Math. J. 2022,
74 (4), 575–585. doi:10.1007/s11253-022-02084-4.
- Savchuk V.V. Approximation of holomorphic functions by
Taylor-Abel-Poisson means. Ukrainian Math. J. 2007,
59 (9), 1397–1407. doi:10.1007/s11253-007-0094-0
- Savchuk V.V., Shidlich A.L. Approximation of functions of several
variables by linear methods in spaces \(S^p\). Problems of the theory of
approximation of functions and related questions. Proc. Inst. Math. NAS
of Ukraine 2007, 4 (1), 302–317. (in Ukrainian)
- Prestin J., Savchuk V.V., Shidlich A.L. Direct and inverse
theorems on the approximation of \(2\pi\)-periodic functions by
Taylor-Abel-Poisson operators. Ukrainian Math. J. 2017,
69 (5), 766–781. doi:10.1007/s11253-017-1394-7
- Prestin J., Savchuk V.V., Shidlich A.L. Approximation theorems
for multivariate Taylor-Abel-Poisson means. Stud. Univ.
Babeş-Bolyai Math. 2019, 64 (3), 313–329.
doi:10.24193/subbmath.2019.3.03
- Hrabova U.Z., Kal'chuk I.V. Approximation of the classes \(W_{\beta,\infty}^{r}\) by three-harmonic
Poisson integrals. Carpathian Math. Publ. 2019, 11
(2), 321–324. doi:10.15330/cmp.11.2.321-334
- Kal'chuk I.V., Kravets V.I., Hrabova U.Z. Approximation of the
classes \(W_{\beta }^{r}{{H}^{\alpha
}}\) by three-harmonic Poisson integrals. J. Math. Sci.
(N.Y.) 2020, 246 (1), 39–50.
doi:10.1007/s10958-020-04721-4
- Hrabova U.Z., Kal'chuk I.V., Filozof L.I. Approximative properties
of the three-harmonic Poisson integrals on the classes \(W^{r}_{\beta}H^{\alpha}\). J. Math.
Sci. (N.Y.) 2021, 254 (3), 397–405.
- Rukasov V.I., Chaichenko S.O. Approximation of the Classes \(C^{\overline{\psi}}H_\omega\) by de la
Vallée-Poussin Sums. Ukrainian Math. J. 2002, 54
(5), 839–851. doi:10.1023/A:1021643732395
- Serdyuk A.S., Ovsii I.Y. Uniform approximation of Poisson
integrals of functions from the class \(H_\omega\) by de la Vallee Poussin
sums. J. Anal. Math. 2012, 38 (4), 305–325.
doi:10.1007/s10476-012-0403-1
- Serdyuk A.S., Ovsii E.Y. Approximation of the classes \(C^{\psi}_{\beta}H_\omega\) by generalized
Zygmund sums. Ukrainian Math. J. 2009, 61 (4),
627–644. doi:10.1007/s11253-009-0229-6