References

  1. Arestov V.V. Approximation of unbounded operators by bounded operators and related extremal problems Russian Math. Surveys 1996, 51 (6), 1093–1126. doi:10.1070/RM1996v051n06ABEH003001 (translation of Usp. Mat. Nauk 1996, 51 (6), 89–124. doi:10.4213/rm1019 (in Russian))
  2. Arestov V.V. Uniform Approximation of Differentiation Operators by Bounded Linear Operators in the Space \(L_r\). Anal. Math. 2020, 46, 425–445. doi:10.1007/s10476-020-0040-z
  3. Arestov V.V., Gabushin V.N. Best approximation of unbounded operators by bounded operators. Russian Math. (Iz. VUZ) 1995, 39 (11), 38–63. (translation of Izv. Vyssh. Uchebn. Zaved. Mat. 1995, 11, 42–68. (in Russian))
  4. Babenko V., Babenko Yu., Kriachko N. Inequalities of Hardy-Littlewood-Pólya Type for Functions of Operators and Their Applications. J. Math. Anal. Appl. 2016, 444 (1), 512–526. doi:10.1016/J.JMAA.2016.05.033
  5. Babenko V.F., Bilichenko R.O. Approximation of unbounded operators by bounded operators in a Hilbert space. Ukrainian Math. J. 2009, 61, 179–187. doi:10.1007/s11253-009-0212-2 (translation of Ukrain. Mat. Zh. 2009, 61 (2), 147–153. (in Russian))
  6. Babenko V.F., Korneichuk N.P., Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applications. Naukova Dumka, Kyiv, 2003. (in Russian)
  7. Babenko V., Babenko Yu., Kriachko N., Skorokhodov D. On Hardy-Littlewood-Pólya and Taikov type inequalities for multiple operators in Hilbert spaces. Analysis Math. 2021, 47 (4), 709–745. doi:10.1007/s10476-021-0104-8
  8. Berdnikova I.V., Rafal'son S.Z. Some inequalities between norms of a function and its derivatives in integral metrics. Soviet Math. (Izv. VUZ) 1985, 29 (12), 1–5. (translation of Izv. Vyssh. Uchebn. Zaved. Mat. 1985, 12, 3–6. (in Russian))
  9. Besse A.L. Manifolds all of whose Geodesics are Closed. In: Zariski O. (Eds.) A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin Heidelberg New York, 1978. doi:10.1007/978-3-642-61876-5
  10. Bilichenko R.O. Some problems of approximation theory for powers of normal operators in Hilbert space. Researches in Math. 2010, 18, 59–71. doi:10.15421/241007 (in Russian)
  11. Hardy G.H., Littlewood J.E., Pólya G. Inequalities. University Press, Cambridge, 1934.
  12. Mitrinović D.S., Pečarić J.E., Fink A.M. Inequalities Involving Functions and Their Integrals and Derivatives. In: Sobczyk K. (Eds.) Mathematics and its Applications, 53. Springer, Netherlands, 1991. doi:10.1007/978-94-011-3562-7
  13. Stechkin S.B. Inequalities between norms of derivatives of an arbitrary function. Acta Sci. Math. 1965, 26, 225–230.
  14. Stechkin S.B. Best approximation of linear operators. Math. Notes 1967, 1 (2), 91–99. doi:10.1007/BF01268056 (translation of Mat. Zametki 1967, 1 (2), 137–148. (in Russian))
  15. Subbotin Yu.N., Taikov L.V. Best approximation of a differentiation operator in \(L_2\)-space. Mathem. Notes 1968, 3, 100–105. doi:10.1007/BF01094328 (translation of Mat. Zametki 1967, 3 (2), 157–164. (in Russian))
  16. Yosida K. Functional Analysis. Springer-Verlag, Berlin Heidelberg, 1995. doi:10.1007/978-3-642-61859-8