References

  1. Bedoya D., Ortega M., Ramı́rez W., Urieles A. New biparametric families of Apostol-Frobenius-Euler polynomials of level \(m\). Mat. Stud. 2021, 55 (1), 10–23. doi:10.30970/ms.55.1.10-23
  2. Carlitz L. A degenerate Staudt-Clausen theorem. Arch. Math. 1956, 7, 28–33. doi:10.1007/BF01900520
  3. Cesarano C. A note on generalized Hermite polynomial. Int. J. Appl. Math. Inform. 2014, 8, 1–6.
  4. Cesarano C., Ramı́rez W., Khan S. A new class of degenerate Apostol-type Hermite polynomials and applications. Dolomites Res. Notes Approx. 2022, 15 (1), 1–10. doi:10.14658/pupj-drna-2022-1-1
  5. Dattoli G., Cesarano C. On a new family of Hermite polynomials associated to parabolic cylinder functions. Appl. Math. Comput. 2003, 141 (1), 143–149. doi:10.1016/S0096-3003(02)00328-4
  6. Dattoli G., Sacchetti D., Cesarano C. A note on Chebyshev polynomials. Ann. Univ. Ferrara 2001, 7 (47), 107–115. doi:10.1007/BF02838178
  7. Khan W.A. A note on degenerate Hermite poly-Bernoulli numbers and polynomials. J. Class. Anal. 2016, 8 (1), 65–76. doi:10.7153/jca-08-06
  8. Kim T., Kim D.S. Identities involving degenerate Euler numbers and polynomials arising from nonlinear differential equations. J. Nonlinear Sci. Appl. 2016, 9, 2086–2098.
  9. Kim T. A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 2017, 20 (3), 319–331. doi:10.17777/pjms2017.20.3.319
  10. Kurt B. Some relationships between the generalized Apostol-Bernoulli and Apostol-Euler polynomials. Turk. J. Anal. Number Theory 2013, 1 (1), 54–58.
  11. Kurt B. A further generalization of the Bernoulli polynomials and on the 2D-Bernoulli polynomials \(B_{n}^2(x,y)\). App. Math. Sci. 2010, 4 (47), 2315–2322.
  12. Lim D. Some identities of degenerate Genocchi polynomials. Bull. Korean Math. Soc. 2016, 53 (2), 569–579. doi:10.4134/BKMS.2016.53.2.569
  13. Pathan M.A., Khan W.A. Some new classes of generalized Hermite-based Apostol-Euler and Apostol-Genocchi polynomials. Fasc. Math. 2015, 55, 153–170. doi:10.1515/fascmath-2015-0020
  14. Natalini P., Bernardini A. A generalization of the Bernoulli polynomials. J. Appl. Math. 2003, 3, 155–163. doi:10.1155/S1110757X03204101
  15. Rainville E.D. Special Functions. Chelsea Publishig Co., Bronx, New York, 1971.
  16. Ramı́rez W., Ortega M., Urieles A. New generalized Apostol-Frobenius-Euler polynomials and their matrix approach. Kragujev. J. Math. 2021, 45 (3), 393–407. doi:10.46793/KGJMAT2103.393O
  17. Subuhi K., Tabinda N., Mumtaz R. On degenerate Apostol-type polynomials and applications. Bol. Soc. Mat. Mex. 2019, 25, 509–528. doi:10.1007/s40590-018-0220-z
  18. Srivastava H.M., Choi J. Series associated with the Zeta and related functions. Springer, Dordrecht, 2001.
  19. Tremblay R., Gaboury S., Fugére B.-J. Some new classes of generalized Apostol-Euler and Apostol-Genocchi polynomials. Int. J. Math. Math. Sci. 2012, 2012, 182785. doi:10.1155/2012/182785
  20. Tremblay R., Gaboury S., Fugère B.-J. A further generalization of Apostol-Bernoulli polynomials and related polynomials. Honam Math. J. 2012, 34 (3), 311–326. doi:10.5831/HMJ.2012.34.3.311
  21. Urieles A., Ortega M., Ramirez W., Vega S. New results on the \(q\)-generalized Bernoulli polynomials of level \(m\). Demonstr. Math. 2019, 52 (1), 511–522. doi:10.1515/dema-2019-0039