References

  1. Blahota I., Gát G., Goginava U. Maximal operators of Fejér means of double Vilenkin-Fourier series. Colloq. Math. 2007, 107 (2), 287–296. doi:10.4064/cm107-2-8
  2. Gát G. On the divergence of the \((C,1)\) means of double Walsh-Fourier series. Proc. Amer. Math. Soc. 2000, 128 (6), 1711–1720.
  3. Gát G., Goginava U. Maximal convergence space of a subsequence of the logarithmic means of rectangular partial sums of double Walsh-Fourier series. Real Anal. Exchange 2005/2006, 31 (2), 447–464.
  4. Gát G., Karagulyan G. On convergence properties of tensor products of some operator sequences. J. Geom. Anal. 2015, 26 (4), 3066–3089. doi:10.1007/S12220-015-9662-Y
  5. Goginava U. Maximal operators of \((C,\alpha)\)-means of cubic partial sums of \(d\)-dimensional Walsh-Fourier series. Anal. Math. 2007, 33 (4), 263–286. doi:10.1007/s10476-007-0402-9
  6. Goginava U. Marcinkiewicz-Fejér means of double Vilenkin-Fourier series. Studia Sci. Math. Hungar. 2007, 44 (1), 97–115.
  7. Goginava U. Logarithmic means of Walsh-Fourier series. Miskolc Math. Notes 2019, 20 (1), 255–270. doi:10.18514/MMN.2019.2702
  8. Goginava U. Maximal operators of Walsh-Nörlund means on the dyadic Hardy spaces. Acta Math. Hungar. 2023, 169 (1), 171–190. doi:10.1007/s10474-023-01294-x
  9. Goginava U., Nagy K. Some properties of the Walsh-Nörlund means. Quaest. Math. 2023, 46 (2), 301–334. doi:10.2989/16073606.2021.2014594
  10. Golubov B., Efimov A., Skvortsov V. Walsh series and transforms. Theory and applications. In: Mathematics and its applications. Soviet series, 64. Kluwer Academic Publishers Group, Dordrecht, 1987.
  11. Móricz F., Schipp F., Wade W.R. Cesàro summability of double Walsh-Fourier series. Trans. Amer. Math. Soc. 1992, 329 (1), 131–140. doi:10.2307/2154080
  12. Móricz F., Siddiqi A.H. Approximation by Nörlund means of Walsh-Fourier series. J. Approx. Theory 1992, 70 (3), 375–389.
  13. Wade W.R., Schipp F., Simon P. An introduction to dyadic harmonic analysis. In: Hilger A. (Ed.) Walsh series. Akadémiai Kiadó, Budapest, 1990.
  14. Simon P. Cesáro summability with respect to two-parameter Walsh systems. Monatsh. Math. 2000, 131 (4), 321–334. doi:10.1007/s006050070004
  15. Toledo R. On the boundedness of the \(L^1\)-norm of Walsh-Fejér kernels. J. Math. Anal. Appl. 2018, 457 (1), 153–178.
  16. Weisz F. Cesáro summability of one-and two-dimensional Walsh-Fourier series. Anal. Math. 1996, 22 (3), 229–242.
  17. Weisz F. Summability of multi-dimensional Fourier series and Hardy spaces. In: Mathematics and its Applications, 541. Kluwer Academic Publishers, Dordrecht, 2002.
  18. Yano S. On approximation by Walsh functions. Proc. Amer. Math. Soc. 1951, 2 (6), 962–967. doi:10.2307/2031716