ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp
Carpathian Math. Publ. 2024, 16 (1), 290-302 KapmaTcbki MmaTeM. my6a. 2024, T.16, Ne1, C.290-302
d0i:10.15330/cmp.16.1.290-302

[\

Almost everywhere convergence of two-dimensional
Walsh-Norlund means

Goginava U.?, Nagy K.3

The present paper the almost everywhere convergence of two-dimensional Walsh-Norlund
means is studied, when the given function belongs to the hybrid Hardy space H,. Because the
Norlund means are a generalization of several known classical summability methods, previously
known classical theorems are derived from the main theorem. In addition some new results follow
in particular cases as well.

Key words and phrases: Walsh system, Norlund mean, Hardy space, weak type inequality, almost
everywhere convergence.
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1 Walsh functions

We denote the set of non-negative integers by IN. By a dyadic interval in I := [0, 1) we mean
one of the form [(l —1)27%, lZ_k) for somek € N, 0 < I < 2*. For any givenk € N and x € I,
let I;(x) denote the dyadic interval of length 2~% which contains the point x. The c-algebra
generated by the dyadic intervals {I,(x) : x € I} will be denoted by A, more precisely, we
have

Ap = o{ 27", (k+1)27") 0 < k< 2"},

where () denotes the o-algebra generated by an arbitrary set system H.
We also use the notation I, := I, (0) , I, :==1I\I,,n € N. Let

X = i x, 2~ (1)
n=0

be the dyadic expansion of x € I, where x, = 0 or 1. If x is a dyadic rational number, we
choose the expansion, which terminates in zeros.
For any given n € IN it is possible to write n uniquely as

n=7Y e (n)2,
k=0
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where ¢; (n) = 0 or 1 for k € IN. This expression is called the binary expansion of n and the
numbers ¢ (1) are called the binary coefficients of n. Let us introduce for 1 < n € N the
notation |n| := max {j € N:¢; (n) # 0}, thatis, 2"l < n < 2/+1,

Let us set the nth Walsh-Paley function at the point x € I as

wy (x) = (-2, neN.
Let us denote the logical addition on I by 4. That is, for any x, y € I, we have
xty =)l =y 270D,
n=0

The nth Walsh-Dirichlet kernel is defined by

n—1
x) =) wi(x)
k=0
Recall [10,13] that

Don (x) =2"1p, (x), (1)

where 1 is the characteristic function of the set E.
The norm of the space L; (I2), where I? := [0,1) x [0,1), is defined by

£l i= [, 1F () [ddy.

The space weak-L (I?) consists of all measurable functions f for which
Hf”weak—Ll(]Iz) = iufg A}l({‘f’ > A}) < +0o,
>

where 1 is the Lebesgue measure.
Let f € L1(I%). The rectangular partial sums of 2-dimensional Fourier series with respect
to the Walsh system are defined by

—1m-1
S (f;%,y) = ZZfl]wz (y)r
i=0 j=0
where the number

Flid) = [, f (o) wilx)ay(y)ddy

is the (i, j)th Walsh-Fourier coefficient.

2 Walsh-Norlund means

Let {gx : k > 0} be a sequence of non-negative numbers. It is always assumed that g9 > 0
and lim,, e Q; = 0. We define the nth Norlund mean of the Walsh-Fourier series by

£ (f;x) = Z% kSe(f;x),  f e L), (2)
Qn k2
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where Q,, := Z,’z;é gk, 1 > 1, and

:]::Z: (/wai>wi (x)

is the partial sums of the one-dimensional Walsh-Fourier series. In this case, the summability
method generated by the sequence {gj : k > 0} is regular (see [12]) if and only if

lim =1 — o, 3)

n—o00 Qn

The Norlund kernels are defined by

1 n
Dt) = 0, Y qu_kDx(t)
n k=1

The Fejér means and kernels are

)= LY S(F), K= - YDyl Ky=0.
k=1 k=1

It is easily seen that the means t,(f) and 0, (f) can be got by convolution of f with the kernels
F,E‘” and K,,. That is,

Dfix) = [ fa ORI 0= (F+RY) (),
ou(fix) = [ fleFDKu(t)dt = (F 5 Ke) (3)

It is well-known that the L; norms of Fejér kernels are uniformly bounded, that is, there
exists a positive constant c such that

|Knl1 < ¢ forall n e IN. 4)

S. Yano [18] estimated the value of c and he gave c = 2. Recently, in paper [15], it was shown
that the exact value of ¢ is 1Z.
For sequences {gy : k € N} and {p; : I € N} of non-negative numbers the two-dimensional

Norlund means t,(ﬁ,’ff ) (f) are defined as follows

n m
ZZ% kPm—1Sk1(f;%,y),  Po,q0 >0,

1717
W ix) = g o LY

where P, := Y7 pre

The two-dimensional kernel function F,Sf’,;f ) (x,v) is the product of one-dimensional kernels
L (x) and Ep) (y) defined by the sequences {g; : k € N} and {p; : | € N}, respectively. That
is,

B (Fixy) = (Fx (BY @ BY)) (ry) = [ f (rbs,y O B (s, ) dsat

where ® denotes Kronecker’s product.
The following two theorems were proved in the paper [9] and they have an important role
in proving the main theorems of the presented article.



Almost everywhere convergence of two-dimensional Walsh-No6rlund means 293

Theorem 1. Letn = 2" 42" ... 4 2" withny > ny > --- > n, > 0. Let us set n(0) :=n
and n) ;= n(=1) — 2 for i =1,...,r—1,and n") := 0. Then the following decomposition

r 21

w
B = Q_Z Y Qi 0wy Dy — Zw Wyt Z Geen) Pk = Fup+ Faz - )
j=1

holds.

Theorem 2. Let {q; : k € IN} be a sequence of non-negative numbers. If this sequence is
monotone non-increasing (in sign qi |.), then

|

Note that the estimation (6) is two-sided, when

|n|
V), ~ o & lectn) = eraa ()] 0 ©
n k=1

Sup &5 Qn Z lex(11) — exs1(1)| Qo = o0,

otherwise there is only an upper estimation.
Applying Abel’s transformation we have

2" -1 2" 2
Y G De=), <¢1k+n<]‘> - qk+n<]‘>+1> KKy + q,,6-1_1 (2% = 1)Ky .
k=1

Thus, we get

2% -2

Fup = On Y. ) Wy (-nWyrj _q (qk+n(7) - qk+n(7>+1> kK

.

1 2

—nanO,l)w i _19nG-1)— 1(2 1)K2”/‘_1 = Fn(,2)+F15,2)'
i=1

3 Operators of subsequences of Walsh-No6rlund means and H; space

Let f € L1(I). The dyadic Hardy space H1(I) consists of all functions for which
£l == || sup sz (1) < =

A bounded measurable function a is an H; atom, if either a is constant or there exists a
dyadic interval I, such that

a) /Ia:O,'
b) flall < p (1)

c) suppa C I.
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An operator T is called Hj-quasi-local, if there exists a constant ¢ > 0 such that for every
Hj-atom a we have

/ ITa| < ¢ < oo,
I\

where [ is the support of the atom. We shall need the following Theorem A [13, p. 263].
An operator T : X — Y is called a o-sublinear operator, if for any a € C it satisfies

(x4

where X is a linear space and Y is a measurable function space.

4

< ﬁwm and  [T(af)] = |a||T(f)

Theorem A. Suppose that the operator T is c-sublinear and quasi-local. If T is bounded from
Loo () to Leo(T), then

1Tl < cllfllg - f € Hi(ID).

Let us define for the positive number K the subset Lx({gx}) of natural numbers by

||
Li({aud) = {r € N Vi {a)) = - 3 e () =4 ()| Qs < K .

The following result has been proved in [8].

Theorem 3 ([8]). Let {m, : A € N} be a subsequence which is not a subsequence of Lx({qx})
for any K > 0. More precisely,

1 [mal

Sup Y lek(ma) — €1 (ma)| Qo = o0 (8)
AEN KMa (=1

holds. Then the operator t,(ﬁl (f) is not uniformly bounded from Hy(I) to L1(I).

It is known [9] that if {g; : k € N} is a non-decreasing sequence, then the maximum

operator A sup, N ‘t,(ﬂ)} is bounded from the space H; to the space L;. In general, the

similar statement is invalid when {gi : k € IN} is decreasing, and it is dependent on the rate
of decrease. The paper [8] provides a necessary and sufficient condition for the maximum
operator to be bound from the space H; to the space L. In particular, this condition reads as

follows
n

sup (Ql ) Q2k> < 0. )

nelN 2" =1

Now, we can formulate the following problem.
Let us say the condition (9) is not fulfilled, also, there exists a subsequence {n, : a € N},
such that

|14
sup (an Z €k—1 (nu) — & (nu)

aeN k=1

Q2k> < 0. (10)

Then is the maximal operator sup . }t,&? | bounded from H; () to Ly (I)?
In general, the answer to the question is negative. In particular, the following is valid.
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Theorem 4. Let {g; : k € IN} be a non-inereasing sequence. Then there exists a subsequence

{n, : a € N} for which condition (10) is satisfied and the maximum operator sup ,.; \t,(;i)\ is
not bounded from the space Hy (1) to the space L (I).

Proof. Set f, :== Dyp+1 — Dy. Then it easy to see that sup,, }Szn (fp) } = D,y and consequently,

Ifoll, = | sup |52 )], = 1Dsll = 1.

We can write

(9) 1 zbizs 1 zbzﬂs
by s (f6) = Gob 125 So(f) = Qb 125 Sv (Dypi1 — Dop)
2042 Qovyps 91 S Qob s S PAr-vte T2 2
1 2b+25 w s
Z Yob sy (D Dzb) = 2 Z qufz;Dv/ s < b.
Q2b+2° p=2b Qb 125 34

Consequently, we have

28 2
(q) _
su t S( b) H = su 25 / 25 _
Hogsgb‘ 242 /i ‘ 1 Ogslzb Q2b+2<vzlq b Z If\1t+1o<s<b Q2b+2<vzlq b
b—1 b—1 1 1 2t
S A LSS R P
tZ(:J I\I11 Q2b+2f ; P20 Z 2t+1 Qab 42t ; T2
b—1 1
> ¢ Got_0 > — ) Q.
;) 2t QZ v th: 1 ? QZ Z
Hence,
sup H sup |ty o (fo) H
beN O<s<b‘ 242 }
Theorem 4 is proved. O

Set tiq) (f) := sup }tgz) (f)|- Now, we prove that the following is valid.
neN

Theorem 5. Let {q; : k € IN} be a non-inereasing sequence. The following inequality is true

1Ay < cllflly,, f e Hi. (1)

Proof. According to Theorem A, it suffices to prove that the sequence of operator t* (f) is
Hi-quasi-local and bounded from Lo (I) to Lo (I). The boundedness of the operator is proved
in [9]. We suppose that f € H; (II). Let function a be an H; atom. Without lost of generality we
can suppose that supp(a) C Iy. Consequently, for any function ¢ which is Ay-measurable we
have that [;ag = 0. So, we can assume that n > N and it is enough to prove that the operator
t* (f) is Hy-quasi local. That is,

sup [ }a*F(Z)} <c. (12)
n>NYIN
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Let x € Iy. Then from (5) we can write
[0+ B) ()] < lalls | |FSP (x40t
N

(13)
S 2N/ ‘FZ”,l (x + f) } dt + 2N/ }an/z (X —{— t) ‘ di’.
IN IN

Since Fpu1 = Do, t € Iy and x ¢ Iy, we have that x +t ¢ Iy and consequently by (1) we get
Don (x4+t) =0forn > N, and
/\&u@+npﬁ:0 (14)
In
Now, we estimate F, > (see (7)). Since the estimation of Fn(zz) is analogous to the estimation of

Fn(lz) it suffices to evaluate one of them. It is proved in [8] that

/I FY (x40 [dt =T () +a(m)+J5(n), xely, tely,

where
J1( Z sup  (k|Kg|),
m—=12m-1<f<om
= 22N Z sup  (k[Kl),
m=12m-1<k<om
¢ NoL ¢ N=1
J3(n) = 555 . (2°Ka) + 5y ZX(:) 21 (e))-
S= —=

Since (see [13])
/ sup  (k|Kg]) < c2™,

[ om=1<g<om
we get

[ su 2N</
/IN n>21?\7 In

F,Slz) (x+ t)) dt)dx < 2‘72 ! Z / sup k\Kk (x) \)dx

N om— 1<k<2m

Z/ sup k}Kk (x) Ddx
IN gm=1<jcom
+ o Z / (2°Kas (%)) dx
2N = Iy
¢ N-1 l
+oN Z 2 ﬁ 11N(€1) (x) dx

2—|—c
Qz Z‘h} 1

Since
N 2711 oN-1_1q
2‘727 12]<4Z Z q =4 Z q7j < 4Qyn,
j=21=22
we have

sup 2N </
/TN n>§\)l In

Combining (13), (14) and (15) we complete the proof of Theorem 5. O

$2ﬁ+ﬂwﬁdx§c<w. (15)
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4 Unrestricted convergence of two-dimensional Walsh-Norlund means
Let f € Li(I?). The hybrid maximal function is introduced by

fi(x,y) == sup m ‘/In(x) f(t,y)dt' .

nelN

Define the space H; (I?) of Hardy type as the set of functions f such that || f|| g+ := || d Hl < oo,
The positive logarithm function log™ is defined by

log* (x) 1= {log( x), if x>1,

0, otherwise.

We say that the function f € L;(I?) belongs to the logarithmic space LInL(I?) if the
integral
“If
is finite. Recall that LIn L(I?) C H,(I?). Moreover, f € LInL(I?) if and only if |f| € th (12).
In 1992, F. Méricz, E. Schipp and W.R. Wade proved that the Fejér means

1 n m

%Zzsi,j(f)

i=1j=1

of two-dimensional Walsh-Fourier series converge to f almost everywhere in Pringsheim sense
(that is, with no restrictions on the indices other than min{n,m} — o0) for all functions
f € LInL(I?) [11]. Later, G. G4t [2] proved that the theorem of F. Méricz, F. Schipp and
W.R. Wade can not be sharpened.
Hardy spaces were used by F. Weisz [16, 17] to study the almost everywhere summability
of Walsh-Fourier series. In particular, it follows from theorem of F. Weisz that if f € H; (12),
then
SN g1 gpl ) _
iy A 1 0 i i i) = £ e

m—

forae. (x,y) € I?,a, 8 > 0.

The following theorem was proved by F. Méricz, F. Schipp and W.R. Wade [11] (see also [14]),
which allows us to apply the one-dimensional case result for the two-dimensional case. In par-
ticular, the following has been proved.

Theorem 6 ([11]). Let {Vé :n € N}, i = 0,1, be the sequence of L;(II) functions. Define one-

dimensional operators T'f := sup |f * V|, «|Vi|| for f € Ly (I),i = 0,1, and
melN
suppose that there exist absolute constants cy, c1, such that

p({T0f >23) < 2lfly and [Ty < erlflly,

for f € Ly (I) and A > 0.
If Tf = SUP (5, m)eN2 }f* (VY(I) ® Vﬂl1) 4

coc1

p({TF > A1) < DL ifly,, f € Hy(12), A >0,



298 Goginava U., Nagy K.

Let us set
B = £+ |R).

The next theorem was proved in paper [9].

Theorem 7. Let {m, : A € P} be a strictly monotone increasing sequence. Let {q; : k € IN}
be a monotone non-increasing sequence of non-negative numbers (in sign qy ). If

{ma:A €N} € Le({gx}) (17)

for some K > 0, then there exists a positive constant c such that

supu( {sop[EL(P] > 1} ) < el (19

A>0

holds for all f € L1(I) and A > 0.
By Theorem 6, Theorem 5, Theorem 7 and (9) we have the next theorems.
Theorem 8. Let {py : k € N}, {gx : k € IN} be non-increasing sequences, such that
{na:AeN}CLe({qc})

for some K > 0 and

1 m
sup < ) sz) < o0,
m

sz =1
Then the maximal operator sup ‘ f* F,SZ) ® F,gf )‘ is boundend from the space H, (I?) to the
AmeN
space weak-L1 (1?).

Theorem 9. Let {py : k € N}, {gx : kK € IN} be non-increasing sequences, such that
{na:AeN}CLxe({qc})

for some K > 0. Then the maximal operator sup ‘ fx F,SZ) ® F, (ﬁ)
A,meN

is boundend from the space
H,(I?) to the space weak-Ly (I?).

Theorem 10. Let {qy : k € IN} be non-increasing sequence such that {n4 : A € N} C Lx({qx})

for some K > 0 and let {py : k € N} be increasing (positive) sequence. Then the maximal

operator sup ‘ f* F,SZ) ® F,gf ) ‘ is boundend from the space H; (I?) to the space weak-L; (I?).
AmeN

The usual density argument imply the next corollaries.

Corollary 1. Let the conditions of Theorem 8 be satisfied. Then the two-dimensional Walsh-
Norlund means ty,, . (f) converge to f almost everywhere as min{n4,m} — oo for all func-
tions f € Hy(I?).

Corollary 2. Let the conditions of Theorem 9 be satisfied. Then the two-dimensional Walsh-
Norlund means t,, , o (f) converge to f almost everywhere as min{n 4,2"} — co for all func-
tions f € Hy(I?).
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Corollary 3. Let the conditions of Theorem 10 be satisfied. Then the two-dimensional Walsh-
Norlund means t,, , . (f) converge to f almost everywhere as min{n,,m} — oo for all func-
tions f € Hy(I?).

Finally, consider the case when both sequences {p; : k € N} and {g; : k € IN} are increas-
ing and positive. In order to consider this case, we need the following lemma.

Lemma 1. Let {g; : | € N} be a monotone non-decreasing sequence of non-negative numbers.
Then for the operator t(f) := sup |f * |F,|| weak type inequality (18) holds.
neN

Proof. Let the sequence {g; : | € IN} be a monotone non-decreasing sequence of non-negative
numbers. Applying Abel’s transformation it is easily seen that

1 n—1 n
"< or L @i i) kIl + 5 (Kl = .
=

Since )
1 '&
Q_ Z (Gn—k — Gn-rk-1)k+ qQO—Z <c < oo,
from (4) we can prove that the operator £(f) is of type (Les, Leo). Indeed, we can write
sup |+ [E||[|_ <[ sup 171+ B | < 1fllosup 1], <
nelN nelN

Now, we prove that the operator sup ‘ fx F is quasi-local. In particular, let f € L; (I) such
nelN

that supp (f) C Iy ( f Iy = 0 for some dyadic interval Iy (#’). Then we have

"]

ﬁ sup [+ EX"| < c | fll
In(W') neN
By the shift invariancy of the measure it can be supposed that u’ = 0. If n < 2N, then

FxEW = 0.

Consequently, n > 2N can be supposed. Then we have

f*?lgq) = é ( ni:l (qn—k_qn—k—1>k<f* ‘Kk‘> +qu<f* ‘Kn‘>> :

k=2N+1

Hence,

| sup [f B )<suin’f<an—an1>k /7N<S“P S 17 ) |1K e ) »du)

N p>2N nelN k= k>2N

+/IN (:;12}1]‘8—:/11\] }f(u)HKMx—i—u)‘du) dx
SC/IN |f (u) | (/IN:;}zI}Kk(x—i—u) }dx) du
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Since

ﬁ sup |Ky| < oo, (19)

IN >N
we have
/TN:fz% \f*F \ < c|lflls-
Since the sublinear operator is quasi-local and of type (L, L), then by standard argument
(see, e.g., [13, p. 263]) it follows that the operator  (f) is of weak type (1,1). O
From Theorem 6 and Lemma 1 we get the validity of the following assertion.

Theorem 11. Let {q; : k € N} and {p; : | € N} be monotone non-decreasing sequences of
non-negative numbers. Then there exists a positive constant ¢ such that

{sup lount] > 2| < S0

holds for all f € Hnl(]lz).

Corollary 4. Let the conditions of Theorem 11 be satisfied. Then the two-dimensional Walsh-

Norlund means ty, , (f) converge to f almost everywhere as min{n, m} — oo for all functions
f € Hy(1?).

G. G4t and G. Karagulyan [4] recently established that L In L(II?) space is a maximum Orlicz
space, in which a sequence of operators t, (f) can be convergent almost everywhere to f as
min{n,m} — co. On the other hand, the problems of almost everywhere convergence of
double Walsh-Fourier series along subsequences were studied in the papers [1,5,6].

5 Applications to various summability methods

1, ifj=0,

Example 1. Let

0, ifj>0,
and
g;=Af", a€(01), jEN.
Then
n m
tnm(fxy P Zanpm lsklfxy ZA Skmfx]/)
mg=11=1 n 1k=

Since the sequences {q; : j € N} and {p; : j € N} are non-increasing and {q; : j € N} satisfies
condition (9), we get

lim G ZA WSim(f;x,y) = f(x,y) forae x,y€l, f e Hy(I?).

n—00 n
Ly ({pi})om—eo

Example 2. Let g := A‘?‘_l, pj = Af_l, a, B € (0,1). Then from Corollary 1 we obtain

nom
li Al— 1A/3 S , f e x,yel feH ).
mm{nlrnrql}ﬁoo A8 1Am L Z ; kl(f x,y) = f(x,y) forae xy f h( )
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Example 3. Let g; := j*~!, p; :== jP~!, o, p > 0. First, we consider the case when & = = 0.
Then the Norlund means coincide with the Norlund logarithmic means

m LSy

tum (f5 %, 1)

From Corollary 2 we have

n—12"—-1
: Skl f xny) 2
n%ligo mlogn Z Z Ty =f(x,y) fora.e. x,y€l, feH, <II) (20)
Lx({qx})3n—c0

We note that for the subsequence tyn on (f), the Nérlund logarithmic means a.e. convergence
and divergence were studied by G. Gdt and the first author in the paper [3]. In particular, the
following was proved.

Theorem GG. Let f € H* (I2) . Then
tonom (f;x,y) — f(x,y) a.e.as min(n,m) — oo.

We also have proved that Theorem GG can not be sharpened. We note that, equality (20) in
the one-dimensional case was proved by the first author in [7].
Now, we consider the case when o« = 0 and B > 0. Then from Corollary 2 we get

—1m=1 S (fx y)
lim E AR = f(x,y) forae x,y€l fe H(I).
o /31 _ _ 1_ﬁ ’ ’ ’
LK({17I<_}>)9n _mPlogn (= (5 (n—k)(m—1)

Finally, we consider the case when &, B > 0 and from Corollary 2 we get

ol Sei(f%y)
nooo ntmP (= =5 (n— k) (m— 1)1 P

=f(xy) forae x,yelfe Hh(llz).
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V midt craTTi AOCAIAYKEHO 361KHICTh MavbKe CKpishb ABOBUMIpHMX ceperHiX Yoama-HepayHaa,
KOAM 3apaHa (PyHKIIsT HAAeXUTb TibpuaHOMY npocTopy Xapai Hy. Ockiabku cepeani HepayHaa
€ y3araAbHEHHSIM KiABKOX BiAOMMX KAQCUYHMX METOAIB MiACYMOBYBAHHSI, PaHillle BiAOMI KAACKUHI
TeOpeMI MU BMBOAVMIMO 3 OCHOBHOI TeopeMu. KpiM Toro, B oxpeMux BUIIaAKax OTPMMAaHO AesIKi HOBi
pe3yAbTaTu.

Kntouosi cnosa i ppasu: cucteMa Yoata, cepearst HepayHaa, mpoctip Xapai, HepiBHicTb crabko-
TO THITY, 361XHICTh Malike CKpi3b.



