References

  1. Ahmadi O., Shparlinski I.E., Voloch J.F. Multiplicative order of Gauss periods. Int. J. Number Theory 2010, 6 (4), 877–882. doi:10.1142/S1793042110003290
  2. Andrews G.E. The theory of partitions. Encyclopedia of Mathematics and its Applications Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.
  3. Berrizbeitia P. Sharpening “PRIMES is in \(P\)” for a large family of numbers. Math. Comp. 2005, 74 (252), 2043–2059. doi:10.1090/S0025-5718-05-01727-8
  4. Cheng Q. On the construction of finite field elements of large order. Finite Fields Appl. 2005, 11 (3), 358–366. doi:10.1016/j.ffa.2005.06.001
  5. Gao S. Elements of provable high orders in finite fields. Proc. Amer. Math. Soc. 1999, 127 (6), 1615–1623. doi:10.1090/S0002-9939-99-04795-4
  6. von zur Gathen J., Shparlinski I. Orders of Gauss periods in finite fields. Appl. Algebra Engrg. Comm. Comput. 1998, 9 (1), 15–24. doi:10.1007/s002000050093
  7. Granville A. It is easy to determine whether a given integer is prime. Bull. Amer. Math. Soc. (N.S.) 2005, 42 (1), 3–38. doi:10.1090/S0273-0979-04-01037-7
  8. Maróti A. On elementary lower bounds for the partition function. Integers 2003, 3, 1–9.
  9. Brochero M.F.E., Reis L. Elements of high order in Artin-Schreier extensions of finite fields \({\mathbb F}_q\). Finite Fields Appl. 2016, 41, 24–33. doi:10.1016/j.ffa.2016.05.002
  10. Gary L. Mullen, Panario D. Handbook of finite fields. Discrete Mathematics and its Applications (Boca Raton). In: Mullen G. L., CRC Press, Boca Raton, FL, 2013. doi:10.1201/b15006
  11. Panario D., Thomson D. Efficient \(p\)th root computations in finite fields of characteristic \(p\). Des. Codes Cryptogr. 2009, 50 (3), 351–358. doi:10.1007/s10623-008-9236-0
  12. Popovych R. Elements of high order in finite fields of the form\(F_q[x]/(x^m-a)\). Finite Fields Appl. 2013, 19, 86–92. doi:10.1016/j.ffa.2012.10.006
  13. Popovych R. Elements of high order in finite fields of the form \(F_q[x]/\Phi_r(x)\). Finite Fields Appl. 2012, 18 (4), 700–710. doi:10.1016/j.ffa.2012.01.003
  14. Popovych R. Sharpening of the explicit lower bounds for the order of elements in finite field extensions based on cyclotomic polynomials. Ukrainian Math. J. 2014, 66 (6), 916–927. doi:10.1007/s11253-014-0981-0
  15. Popovych R. On elements of high order in general finite fields. Algebra Discrete Math. 2014, 18 (2), 295–300.
  16. Popovych R. Lower bound on product of binomial coefficients. Bul. Acad. Ştiinţe Repub. Mold. Mat. 2015, 2 (78), 21–26.
  17. Popovych R., Skuratovskii R. Normal high order elements in finite field extensions based on the cyclotomic polynomials. Algebra Discrete Math. 2020, 29 (2), 241–248. doi:10.12958/adm1117
  18. Voloch J.F. Elements of high order on finite fields from elliptic curves. Bull. Aust. Math. Soc. 2010, 81 (3), 425–429. doi:10.1017/S0004972709001075