References

  1. Basu N., Bhattacharyya A. Conformal Ricci soliton in Kenmotsu manifold. Glob. J. Adv. Res. Class. Mod. Geom. 2015, 4 (1), 15–21.
  2. Bejancu A., Farran H. Foliations and geometric structures. In: Mathematics and Its Applications, 580. Springer, Dordrecht, 2006.
  3. Blaga A.M., Yüksel P.S., Acet B.E., Erdoğan F.E. \(\eta\)-Ricci solitons in \(\epsilon\)-almost paracontact metric manifolds. Glas. Mat. 2018, 53 (1), 205–220. doi:10.3336/gm.53.1.14
  4. Blaga A.M., Yüksel P.S. Remarks on almost \(\eta\)-Ricci solitons in \(\epsilon\)-para Sasakian manifolds. Comm. Fac. Sci. Uni. Ankara Series A1 Math. and Stat. 2019, 68 (2), 1621–1628. doi:10.31801/cfsuasmas.546595
  5. Blair D.E., Oubiña J.A. Conformal and related changes of metric on the product of two almost contact metric manifolds. Publ. Mat. 1990, 34 (1), 199–207.
  6. Bochner S. Curvature and Betti numbers II. Ann. of Math. (2) 1949, 50 (2), 77–93. doi:10.2307/1969353
  7. Chakrabotry D., Mishra V.N., Hui S.K. Ricci soliton on three-dimensional \(\beta\)-Kenmotsu manifolds with respect to Schouten-van Kampen connection. J. Ultra Scientist of Phys. Sci. 2018, 30 (1), 86–91. doi:10.22147/jusps-A/300110
  8. Chaubey S.K., De U.C. Three-dimensional trans-Sasakian manifolds and solitons. Arab. J. Math. Sci. 2022, 28 (1), 112–125. doi:10.1108/AJMS-12-2020-0127
  9. Dutta T., Basu N., Bhattacharyya A. Almost conformal Ricci solitons on \(3\)-dimensional trans-Sasakian manifold. Hacet. J. Math. Stat. 2016, 45 (5), 1379–1392. doi:10.15672/HJMS.20164514287
  10. Fischer A.E. An introduction to conformal Ricci flow. Classical Quantum Gravity 2004, 21 (3), 171–218. doi:10.1088/0264-9381/21/3/011
  11. Gray A., Hervella M.L. The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 1980, 123 (4), 35–58. doi:10.1007/BF01796539
  12. Hamilton R.S. Three manifold with positive Ricci curvature. J. Differential Geom. 1982, 17 (2), 255–306. doi:10.4310/jdg/1214436922
  13. Hamilton R.S. The Ricci flow on surfaces. Contemp. Math. 1988, 71, 237–261. doi:10.1090/conm/071/954419
  14. Hui S.K., Chakrabotry D. Ricci almost soliton on concircular Ricci pseudosymmetric \(\beta\)-Kenmotsu manifolds. Hacet. J. Math. Stat. 2018, 47 (3), 579–587. doi:10.15672/HJMS.2017.471
  15. Ianus S. Some almost product structures on manifolds with linear connection. Ködai Math. Sem. Rep. 1971, 23, 305–310.
  16. Kim J.S., Tripathi M.M., Choi J.-D. On C-Bochner curvature tensor of a contact metric manifold. Bull. Korean Math. Soc. 2005, 42 (4), 713–724. doi:10.4134/bkms.2005.42.4.713
  17. Olszak Z. The Schouten-van Kampen affine connection adapted an almost (para) contact metric structure. Publ. de l’Inst. Math. 2013, 94 (108), 31–42. doi:10.2298/PIM1308031O
  18. Oubina J.A. New classes of almost contact metric structures. Publ. Math. Debrecen 1985, 32 (4), 187–193.
  19. Perktaş S.Y., Yıldız A. On quasi-Sasakian \(3\)-manifolds with respect to the Schouten-van Kampen connection. Int. Electron. J. Geom 2020, 13 (2), 62–74. doi:10.36890/iejg.742073
  20. Perktaş S.Y., Yıldız A. On \(f\)-Kenmotsu \(3\)-manifolds with respect to the Schouten-van Kampen connection. Turkish J. Math. 2021, 45 (1), 387–409. doi:10.3906/mat-2003-121
  21. Roy S., Bhattacharyya A. Conformal Ricci soliton on \(3\)-dimensional trans-Sasakian manifold. Jordan J. Math. Stat. 2020, 13 (1), 89–109.
  22. Schouten J., Van Kampen E. Zur Einbettungs-und Krü mmungsthorie nichtholonomer Gebilde. Math. Ann. 1930, 103, 752–783.
  23. Solov’ev A.F. On the curvature of the connection induced on a hyperdistribution in a Riemannian space. Geom. Sb. 1982, 19, 12–23. (in Russian)
  24. Solov’ev A.F. On the curvature of the connection induced on a hyperdistribution in a Riemannian space. Geom Sb. 1978, 19, 12–23. (in Russian)
  25. Solov’ev A.F. The bending of hyperdistributons. Geom. Sb. 1979, 20, 101–112. (in Russian)
  26. Solov’ev A.F. Second fundamental form of a distribution. Mat. Zametki 1982, 35, 139–146.
  27. Solov’ev A.F. Curvature of a distribution. Mat. Zametki 1984, 35, 111–124.
  28. Topping P. Lecture on the Ricci Flow. In: Süli E. (Eds.) London Mathematical Society Lecture Note Series, 325. Cambridge University Press, United Kingdom, 2006.
  29. Turan M., De U.C., Yıldız A. Ricci solitons and gradient Ricci solitons in \(3\)-dimensional trans-Sasakian manifolds. Filomat 2012, 26 (2), 363–370. doi:10.2298/FIL1202363T
  30. Turan M., De U.C., Yıldız A., De A. Ricci solitons and gradient Ricci solitons on \(3\)-dimensional normal almost contact metric manifolds. Publ. Math. Debrecen 2012, 80 (1-2), 127–142. doi:10.5486/PMD.2012.4947
  31. Vishnuvardhana S.V., Venkatesha V., Turgut V.A. On \(3\)-dimensional trans-Sasakian manifold admitting a semi-symmetric metric connection. GU J Sci. 2019, 32 (1), 242–254.