References
- Abasova G.A., Aliyeva L.R., Hasanov J.J., Shirinova E.S.
Necessary and sufficient conditions for the boundedness of
comutators of B-Riesz potentials in Lebegues spaces. J. Contemp.
Appl. Math. 2016, 6 (2), 18–31.
- Akbulut A., Ekincioglu I., Serbetci A., Tararykova T. Boundedness
of the anisotropic fractional maximal operator in anisotropic local
Morrey-type spaces. Eurasian Math. J. 2011, 2 (2),
5–30.
- Ayazoglu R., Hasanov J.J. On the boundedness of \(B\)-Riesz potential in the generalized
weighted \(B\)-Morrey spaces.
Georgian Math. J. 2016, 23 (2), 143–155.
doi:10.1515/gmj-2016-0009
- Burenkov V.I., Guliyev H.V. Necessary and sufficient conditions
for boundedness of the maximal operator in the local Morrey-type
spaces. Studia Math. 2004, 163 (2), 157–176.
doi:10.4064/sm163-2-4
- Burenkov V.I., Guliyev V.S. Necessary and sufficient conditions
for boundedness of the Riesz potential in the local Morrey-type
spaces. Potential Anal. 2009, 31 (2), 1–39.
- Chiarenza F., Frasca M. Morrey spaces and Hardy-Littlewood
maximal function. Rend. Mat. Appl.(7) 1987, 7,
273–279.
- Coifman R.R., Weiss G. Analyse harmonique non commutative sur
certains expaces homogenes. Lecture Notes in Math., Springer-Verlag,
Berlin, 1971.
- Ekincioğlu I., Keskin C., Serbetci A. Multilinear commutators of
Calderón-Zygmund operator on generalized variable exponent Morrey
spaces. Positivity 2021, 25 (1), 1551–1567.
doi:10.1007/s11117-021-00828-3
- Ekincioglu I., Serbetci A. On the singular integral operators
generated by the generalized shift operator. Int. J. Appl. Math.
1999, 199 (1), 29–38.
- Di Fazio G., Ragusa M.A. Commutators and Morrey spaces.
Boll. Unione Mat. Ital. 1991, 7 (5)-A, 323–332.
- Gadjiev A.D., Aliev I.A. On classes of operators of potential
types, generated by a generalized shift. 1988, 3
(2), 21–24. (in Russian)
- Guliyev E.V. Weighted inequality for fractional maximal functions
and fractional integrals,associated with the laplace-bessel differential
operator. Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math.
Sci. 2006, 26 (1), 71–80.
- Guliyev V.S. Integral operators on function spaces on the
homogeneous groups and on domains in \(\mathbb R^n\). Doctor's degree dissertation,
Moscow, Mat. Inst. Steklov 1994, 1–329. (in Russian)
- Guliyev V.S., Hasanov J.J. Necessary and sufficient conditions
for the boundedness of Riesz potential associated with the
Laplace-Bessel differential operator in Morrey spaces. J. Math.
Anal. Appl. 2008, 347 (1), 113–122.
- Guliyev V.S. Sobolev theorems for anisotropic Riesz-Bessel
potentials on Morrey-Bessel spaces. Dokl. Akad. Nauk 1999,
367 (2), 155–156.
- Guliyev V.S. On maximal function and fractional integral,
associated with the Bessel differential operator. Math. Inequal.
Appl. 2003, 2 (2), 317–330. doi:10.7153/mia-06-30
- Guliyev V.S., Hasanov J.J. Sobolev-Morrey type inequality for
Riesz potentials, associated with the Laplace-Bessel differential
operator. Fract. Calc. Appl. Anal. 2006, 9 (1),
17–32.
- Hasanov J.J. A note on anisotropic potentials, associated with
the Laplace-Bessel differential operator. Oper. Matrices 2008,
2 (4), 465–481.
- Hasanov J.J., Ayazoğlu R., Bayrakçi S. B-maximal commutators,
commutators of B-singular integral operators and B-Riesz potentials on
B-Morrey spaces. Open Math. 2020, 18, 715–730.
- Kipriyanov I.A., Fourier-Bessel transformations and imbedding
theorems. Trudy Math. Inst. Steklov 1967, 89,
130–213.
- Kokilashvili V.M., Kufner A. Fractional integrals on spaces of
homogeneous type. Comment. Math. Univ. Carolin. 1989,
30, 511–523.
- Levitan B.M. Bessel function expansions in series and Fourier
integrals. Uspekhi Mat. Nauk 6. 1951, 2 (42),
102–143. (in Russian)
- Lyakhov L.N. Multipliers of the mixed Fourier-Bessel
transformation. Proc. V.A. Steklov Inst. Math. 1997,
214, 234–249.
- Macias R.A., Segovia C. A well behaved quasi distance for spaces
of homogeneous type. Trab. Mat. Inst. Argent. Mat. 1981,
32, 18p.
- Mizuhara T. Boundedness of some classical operators on generalized
Morrey spaces. In: Igari S. (Ed.) Harmonic Analysis, ICM 90 Satellite
Proceedings, Tokyo, 1991, Springer-Verlag, 183–189.
- Morrey C.B. On the solutions of quasi-linear elliptic partial
differential equations. Trans. Amer. Math. Soc. 1938,
43, 126–166. doi:10.1090/S0002-9947-1938-1501936-8
- Muckenhoupt B., Stein E.M. Classical expansions and their
relation to conjugate harmonic functions. Trans. Amer. Math. Soc.
1965, 118, 17–92. doi:10.2307/1993944
- Nakai E. Hardy-Littlewood maximal operator, singular integral
operators and Riesz potentials on generalized Morrey spaces. Math.
Nachr. 1994, 166, 95–103.
- Nakai E. Generalized fractional integrals on generalized Morrey
spaces. Math. Nachr. 2014, 287 (2-3), 339–351.
- Samko S.G., Kilbas A.A., Marichev O.I. Fractional Integrals and
Derivative. Theory and Applications. Gordon and Breach Sci. Publishers
1993.
- Sawano Y. Generalized Morrey spaces for non-doubling
measures. NoDEA Nonlinear Differential Equations Appl. 2008,
12 (4-5), 413–425.
- Sawano Y., Sugano S.,Tanaka H. Generalized fractional integral
operators and fractional maximal operators in the framework of Morrey
spaces. Trans. Amer. Math. Soc. 2011, 363 (12),
6481–6503. doi:10.1090/S0002-9947-2011-05294-3
- Serbetci A., Ekincioglu I. On Boundedness of Riesz potential
generated by generalized shift operator on \(Ba\) spaces. Czechoslovak Math. J.
2004, 54 (3), 579–589.
- Stein E.M. Singular integrals and differentiability properties of
functions. Princeton Univ. Press, Princeton, NJ, 1970.
- Stein E.M., Weiss G. Introduction to Fourier analysis on Euclidean
spaces. Princeton Univ. Press, Princeton, NJ, 1971.
- Stempak K. Almost everywhere summability of Laguerre series.
Studia Math. 1991, 100 (2), 129–147.
- Shishkina E.L. Hyperbolic Riesz \(B\)-Potential and Solution of an Iterated
Non-Homogeneous \(B\)-Hyperbolic
Equation. Lobachevskii J. Math. 2020, 41 (5),
895–916. doi:10.1134/S1995080220050121
- Trimeche K. Inversion of the Lions transmutation operators using
generalized wavelets. Appl. Comput. Harmon. Anal. 1997,
4, 97–112.