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Completeness of the systems
of Bessel functions of index −5/2

Khats’ R.V.

Let L2((0; 1); x4dx) be the weighted Lebesgue space of all measurable functions f : (0; 1) → C,

satisfying
∫ 1

0 t4| f (t)|2 dt < +∞. Let J−5/2 be the Bessel function of the first kind of index −5/2 and

(ρk)k∈N be a sequence of distinct nonzero complex numbers. Necessary and sufficient conditions for

the completeness of the system
{

ρ2
k

√
xρk J−5/2(xρk) : k ∈ N

}
in the space L2((0; 1); x4dx) are found

in terms of an entire function with the set of zeros coinciding with the sequence (ρk)k∈N. In this

case, we study an integral representation of some class E4,+ of even entire functions of exponential

type σ ≤ 1. This complements similar results on approximation properties of the systems of Bessel

functions of negative half-integer index less than −1, due to B. Vynnyts’kyi, V. Dilnyi, O. Shavala

and the author.
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Fubini’s theorem, Hurwitz’s theorem, Hahn-Banach theorem, Jensen’s formula, entire function of

exponential type, complete system.

Drohobych Ivan Franko State Pedagogical University, 24 Franko Str., 82100, Drohobych, Ukraine

E-mail: khats@ukr.net

Introduction

Let L2(X) be the space of all measurable functions f : X → C on a measurable set X ⊆ R

with the norm

‖ f‖2
L2(X) :=

∫

X

∣∣ f (x)
∣∣2

dx.

Let γ ∈ R and L2
(
(0; 1); tγdt

)
be the weighted Lebesgue space of all measurable functions

f : (0; 1) → C, satisfying ∫ 1

0
tγ
∣∣ f (t)

∣∣2
dt < +∞.

Let (see, for example, [2, p. 4], [12, p. 345], [22, p. 40])

Jν(z) =
∞

∑
k=0

(−1)k(z/2)ν+2k

k!Γ(ν + k + 1)
, z = x + iy = reiϕ,

be the Bessel function of the first kind of index ν ∈ R, where Γ is the gamma function. By

Hurwitz’s theorem (see [2, p. 59], [22, p. 483]), for ν > 1 the function J−ν has infinitely many

real zeros and also 2[ν] pairwise conjugate complex zeros, among them two pure imaginary

zeros, when [ν] is an odd integer. Let ρk, k ∈ N, be the zeros of the function J−ν for which

Im ρk > 0 if ρk ∈ C or ρk > 0 if ρk ∈ R.
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Since (see [12, p. 350], [22, p. 55])
√

zJ−5/2(z) = −
√

2/πz−2
(
z2 cos z − 3z sin z − 3 cos z

)
,

we have that the function ρ2√xρJ−5/2(xρ) belongs to the space L2
(
(0; 1); x4dx

)
for every

ρ ∈ C. A system of elements {ek : k ∈ N} in a separable Hilbert space H is called complete

(see [8, p. 131], [9, p. 4258]) if span {ek : k ∈ N} = H.

Various approximation properties of the systems of Bessel functions has been studied in

many papers (see, for example, [1–7, 10–22]). In particular, it is well known that the system{√
xJν (xρ̃k) : k ∈ N

}
is an orthogonal basis for the space L2(0; 1) if ν > −1 and (ρ̃k)k∈N

is

a sequence of positive zeros of Jν (see [1, 2, 4, 12, 22]). It follows that if ν > −1 and (ρ̃k)k∈N

is a sequence of positive zeros of Jν, then the system
{

x−ν Jν (xρ̃k) : k ∈ N
}

is complete

and minimal in L2
(
(0; 1); x2ν+1dx

)
. The system

{√
xJν (xρ̃k) : k ∈ N

}
is also complete

(see [12, pp. 347, 356]) in L2(0; 1) if (ρ̃k)k∈N
is a sequence of zeros of the function J ′ν. Besides,

from [3] it follows that if ν > −1/2 and (ρ̃k)k∈N
is a sequence of distinct positive numbers such

that ρ̃k ≤ π(k + ν/2) for all sufficiently large k ∈ N, then the system
{√

xJν (xρ̃k) : k ∈ N
}

is

complete in L2(0; 1).

Basis properties (completeness, minimality, basicity) of the above systems of Bessel func-

tions and more general systems
{

x−p−1
√

xρ̃k Jν(xρ̃k) : k ∈ N
}

in the space L2
(
(0; 1); x2pdx

)
,

where ν ≥ 1/2, p ∈ R and (ρ̃k)k∈N
is a sequence of distinct nonzero complex numbers, have

been studied in [6, 7, 15–19]. Those results are formulated in terms of sequences of zeros of

functions from certain classes of entire functions.

Approximation properties of the systems of Bessel functions for ν < −1, ν /∈ Z, were

investigated in [5,10,11,13,14,20,21]. In particular, at studying of one boundary value problem,

in [20] (see also [21]) it was proven that the system
{

ρk
√

xρk J−3/2 (xρk) : k ∈ N
}

is complete

in the space L2
(
(0; 1); x2dx

)
, and the system

{
ρk
√

xρk J−3/2 (xρk) : k ∈ N \ {1}
}

is complete,

minimal and is not a basis in this space, where (ρk)k∈Z\{0}, ρ−k := −ρk, is a sequence of zeros

of the function J−3/2.

In addition, in [10] it was shown that the system
{

ρ2
k

√
xρk J−5/2 (xρk) : k ∈ N \ {1; 2

}}
is

complete and minimal in L2
(
(0; 1); x4dx

)
, where (ρk)k∈N

is a sequence of zeros of J−5/2. Be-

sides, in [11] it was established that the system
{

ρν−1/2
k

√
xρk J−ν (xρk) : k ∈ N \ {1; 2; . . . ; l}

}

is complete in L2
(
(0; 1); x2ν−1dx

)
if ν = l + 1/2, l ∈ N and (ρk)k∈N

is a sequence of zeros

of J−ν. However, the problem of completeness of this system in L2
(
(0; 1); x2ν−1dx

)
, when

ν = l + 1/2, l ∈ N and (ρk)k∈N
is an arbitrary sequence of distinct nonzero complex numbers,

remain open. In this direction, in [13] the authors obtained a criterion for the completeness and

minimality of the system
{

ρk
√

xρk J−3/2(xρk) : k ∈ N
}

in L2
(
(0; 1); x2dx

)
with an arbitrary se-

quence of nonzero complex numbers (ρk)k∈N
. In addition, in [14] it was proven that the system{

x−2(ρk
√

xρk J−3/2(xρk)− ρ1
√

xρ1 J−3/2(xρ1)) : k ∈ N \ {1}
}

is also complete and minimal in

L2
(
(0; 1); x2dx

)
, where (ρk)k∈N

is a sequence of distinct nonzero complex numbers such that

ρ2
k 6= ρ2

m for k 6= m.

In this paper, using methods of [5–7, 9, 13–16], we study an integral representation of some

class E4,+ of even entire functions of exponential type σ ≤ 1 (see Theorem 1) and find

necessary and sufficient conditions for the completeness of the system {ψk : k ∈ N}, where

ψk(x) := ρ2
k

√
xρk J−5/2 (xρk), in the space L2

(
(0; 1); x4dx

)
in terms of an entire function with

the set of zeros coinciding with the sequence of distinct nonzero complex numbers (ρk)k∈N

(see Theorems 2–8). This complements the results of papers [3, 5, 10, 11, 13, 14, 20, 21].
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1 Preliminaries

An entire function G is said to be of exponential type σ ∈ [0;+∞) (see [8, p. 4], [9, p. 4262]),

if for any ε > 0 there exists a constant c(ε) such that

∣∣G(z)
∣∣ ≤ c

(
ε) exp((σ + ε)|z|

)

for all z ∈ C.

Denote by PW2
σ the set of all entire functions of exponential type σ ∈ (0;+∞) whose nar-

rowing on R belongs to the space L2(R), and by PW2
σ,+ denote the class of even entire functions

from PW2
σ . According to the Paley-Wiener theorem (see [8, p. 69], [9, p. 4263]), the class PW2

σ

coincides with the class of functions G admitting the representation

G(z) =
∫ σ

−σ
eitzg(t) dt, g ∈ L2(−σ; σ),

and the class PW2
σ,+ consists of the functions G representable in the form

G(z) =
∫ σ

0
cos(tz)g(t) dt, g ∈ L2(0; σ).

Moreover, ‖g‖L2(0;σ) =
√

2/π‖G‖L2(0;+∞) and

g(t) =
2

π

∫ +∞

0
G(z) cos(tz) dz.

Let log+ x = max (0; log x) for x > 0. Here and subsequently, by c1, c2, . . . we denote arbi-

trary positive constants. To prove our main results we need the following auxiliary lemmas.

Lemma 1 ([5, p. 6]). Let an entire function Q be defined by the formula

Q(z) =

√
2

π

∫ 1

0

(
−z2t2 cos(tz) + 3tz sin(tz) + 3 cos(tz)

)
q(t) dt, q ∈ L2(0; 1). (1)

Then for all z = x + iy = reiϕ ∈ C, we have

∣∣Q(z)
∣∣ ≤ c1

e| Im z|
√

1 + | Im z|
(
1 + |z|

)2
,

and Q is an even entire function of exponential type σ ≤ 1.

Lemma 2 ([9, p. 4263]). Let Q be an entire function of exponential type σ ≤ 1 for which the

integral
∫ +∞

−∞

log+
∣∣Q(x)

∣∣
1 + x2

dx

exists and let (ρk)k∈N
be a sequence of nonzero roots of the function Q(z). Then

∑
k∈N

∣∣∣∣Im
1

ρk

∣∣∣∣ < +∞.
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2 Main results

Our principal results are the following statements.

Theorem 1. An entire function Q has the representation

Q(z) =
∫ 1

0
z2
√

tzJ−5/2(tz)t
4h(t) dt (2)

with some function h ∈ L2
(
(0; 1); x4dx

)
if and only if it is an even entire function of exponen-

tial type σ ≤ 1 such that

Q(0) = 3

√
2

π

∫ 1

0
t2h(t) dt, (3)

Q′(z)
z

∣∣∣∣
z=0

=

√
2

π

∫ 1

0
t4h(t) dt, (4)

and the function z−1
(
z−1Q′(z)

)′
belongs to the space PW2

1,+. If these conditions are fulfilled,

then

h(t) =

√
2

π

1

t6

∫ +∞

0

1

z

(
Q′(z)

z

)′
cos(tz) dz.

Proof. Necessity. Let Q has the representation (2) with some function h ∈ L2
(
(0; 1); x4dx

)
.

Since

z2
√

tzJ−5/2(tz) =

√
2

π

−z2t2 cos(tz) + 3tz sin(tz) + 3 cos(tz)

t2
,

we have

Q(z) =

√
2

π

∫ 1

0

(
−z2t2 cos(tz) + 3tz sin(tz) + 3 cos(tz)

)
t2h(t) dt, Q(0) = 3

√
2

π

∫ 1

0
t2h(t) dt.

Therefore, by Lemma 1, the function Q is an even entire function of exponential type σ ≤ 1,

and

Q′(z) =

√
2

π

∫ 1

0

(
z2t sin(tz) + z cos(tz)

)
t4h(t) dt,

Q′(z)
z

=

√
2

π

∫ 1

0

(
tz sin(tz) + cos(tz)

)
t4h(t) dt,

Q′(z)
z

∣∣∣∣
z=0

=

√
2

π

∫ 1

0
t4h(t) dt,

(
Q′(z)

z

)′
=

√
2

π

∫ 1

0
z cos(tz)t6h(t) dt,

1

z

(
Q′(z)

z

)′
=

√
2

π

∫ 1

0
cos(tz)t4q(t) dt,

where q(t) := t2h(t). Since h ∈ L2
(
(0; 1); x4dx

)
, we have q ∈ L2(0; 1), and in accordance with

the Paley-Wiener theorem, the function z−1
(
z−1Q′(z)

)′
belongs to the space PW2

1,+.

Sufficiency. If all the conditions of the theorem hold, then from the formula for the inverse

Fourier cosine transformation it follows that the function

q(t) =

√
2

π

1

t4

∫ +∞

0

1

z

(
Q′(z)

z

)′
cos(tz) dz

belongs to the space L2(0; 1), and

(
Q′(z)

z

)′
=

√
2

π

∫ 1

0
z cos(tz)t4q(t) dt.
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Using Fubini’s theorem, we get

Q′(z)
z

− Q′(z)
z

∣∣∣∣
z=0

=

√
2

π

∫ 1

0
t4q(t) dt

∫ z

0
w cos(tw) dw

=

√
2

π

∫ 1

0

(
tz sin(tz) + cos(tz)− 1

)
t2q(t) dt

=

√
2

π

∫ 1

0

(
tz sin(tz) + cos(tz)− 1

)
t4h(t) dt,

where h(t) = t−2q(t) ∈ L2
(
(0; 1); x4dx

)
. Further, using (4), we obtain

Q′(z) =

√
2

π

∫ 1

0

(
tz2 sin(tz) + z cos(tz)

)
t4h(t) dt.

Furthermore, applying Fubini’s theorem, we get

Q(z)− Q(0) =

√
2

π

∫ 1

0
t4h(t) dt

∫ z

0

(
w cos(tw) + tw2 sin(tw)

)
dw

=

√
2

π

∫ 1

0

(
−z2t2 cos(tz) + 3tz sin(tz) + 3 cos(tz)− 3

)
t2h(t) dt.

Hence, taking into account (3), we have

Q(z) =

√
2

π

∫ 1

0

(
− z2t2 cos(tz)+ 3tz sin(tz)+ 3 cos(tz)

)
t2h(t) dt =

∫ 1

0
z2
√

tzJ−5/2(tz)t
4h(t) dt.

Thus, the theorem is proved.

Let Ẽ4,+ be the class of entire functions Q that can be presented in the form (2) with some

function h ∈ L2
(
(0; 1); x4dx

)
, and let E4,+ be the class of even entire functions Q of exponential

type σ ≤ 1 such that conditions (3), (4) are fulfilled with h ∈ L2
(
(0; 1); x4dx

)
and the function

z−1
(
z−1Q′(z)

)′
belongs to the space PW2

1,+.

Corollary 1. Ẽ4,+ = E4,+.

Corollary 2. The class E4,+ coincides with a set of entire functions Q representing in

the form (1).

Remark 1. In [5], the class E4,+ was described in terms of the existence of solutions of some

differential equations. Also in [5], examples of entire functions Q ∈ E4,+ are given.

Theorem 2. Let (ρk)k∈N
be a sequence of nonzero complex numbers such that ρ2

k 6= ρ2
n for

k 6= n. For a system {ψk : k ∈ N} to be incomplete in the space L2
(
(0; 1); x4dx

)
it is necessary

and sufficient that a sequence (ρk)k∈Z\{0}, where ρ−k := −ρk, k ∈ N, is a subsequence of zeros

of some nonzero entire function Q ∈ E4,+.

Proof. According to Hahn-Banach theorem (see, e.g., [8, p. 131], [9, p. 4258]), the system

{ψk : k ∈ N} is incomplete in L2
(
(0; 1); x4dx

)
if and only if there exists a nonzero function

h ∈ L2
(
(0; 1); x4dx

)
such that

∫ 1

0
ρ2

k

√
xρk J−5/2 (xρk) x4h(x) dx = 0

for all k ∈ N. Hence, taking into account Theorem 1, we obtain the required proposition.

Theorem 2 is proved.
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Theorem 3. Let (ρk)k∈N
be a sequence of distinct nonzero complex numbers such that

|Im ρk| ≥ δ |ρk| for all k ∈ N and some δ > 0. If a system {ψk : k ∈ N} is complete in

L2
(
(0; 1); x4dx

)
, then

∞

∑
k=1

1

|ρk|
= +∞. (5)

Proof. Suppose, to the contrary, that the system {ψk : k ∈ N} is not complete in the space

L2
(
(0; 1); x4dx

)
. Then, by Theorem 2, there exists a nonzero entire function Q ∈ E4,+ for

which the sequence (ρk)k∈Z\{0} is a subsequence of zeros. By virtue of Corollary 2, the func-

tion Q is of the kind (1). Due to Lemma 1, we have
∣∣Q(x)

∣∣ ≤ c1

(
1 + |x|

)2
for all x ∈ R. This

implies
∫ +∞

−∞

log+
∣∣Q(x)

∣∣
1 + x2

dx < +∞.

Therefore, by Lemma 2, we get

∑
k∈N

∣∣∣ Im
1

ρk

∣∣∣ < +∞.

Since |Im ρk| ≥ δ |ρk|, δ > 0, for all k ∈ N, and

∣∣∣ Im
1

ρk

∣∣∣ = |Im ρk|
|ρk|2

≥ δ

|ρk|
,

we have
∞

∑
k=1

1

|ρk|
< +∞.

This contradicts condition (5). Thus, the theorem is proved.

Theorem 4. Let (ρk)k∈N
be a sequence of distinct nonzero complex numbers such that ρ2

k 6= ρ2
m

for k 6= m. Let a sequence (ρk)k∈Z\{0}, where ρ−k := −ρk, be a sequence of zeros of some

even entire function G of exponential type σ ≤ 1 for which on the rays {z : arg z = ϕj},

j ∈ {1; 2; 3; 4}, ϕ1 ∈ [0; π/2), ϕ2 ∈ [π/2; π), ϕ3 ∈ (π; 3π/2], ϕ4 ∈ (3π/2; 2π), we have

∣∣G(z)
∣∣ ≥ c2

(
1 + |z|

)2
e| Im z|.

Then the system {ψk : k ∈ N} is complete in L2
(
(0; 1); x4dx

)
.

Proof. Assume the converse. Then, according to Theorem 2, there exists a nonzero even entire

function Q ∈ E4,+ for which the sequence (ρk)k∈Z\{0} is a subsequence of zeros.

Let V(z) = Q(z)/G(z). Then V is an even entire function of order τ ≤ 1, for which by

Corollary 2 and Lemma 1, we obtain

∣∣V(z)
∣∣ ≤ c3

1√
1 + | Im z|

, arg z = ϕj, j ∈ {1; 2; 3; 4}.

Therefore, according to the Phragmén-Lindelöf theorem (see [8, p. 38], [9, p. 4263]), we get

V(z) ≡ 0. Hence Q(z) ≡ 0. This contradiction proves the theorem.
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Corollary 3. Let (ρk)k∈N
be a sequence of zeros of the function J−5/2. Then the system

{ψk : k ∈ N} is complete in L2
(
(0; 1); x4dx

)
.

Proof. Indeed, a sequence (ρk)k∈Z\{0}, where ρ−k = −ρk, is a sequence of zeros of an en-

tire function G(z) = −z2 cos z + 3z sin z + 3 cos z, and this function satisfies the conditions of

Theorem 4. Therefore, a system {ψk : k ∈ N} is complete in L2
(
(0; 1); x4dx

)
. Corollary 3 is

proved.

Theorem 5. Let (ρk)k∈N
be a sequence of distinct nonzero complex numbers such that ρ2

k 6= ρ2
m

for k 6= m. Let a sequence (ρk)k∈Z\{0}, where ρ−k := −ρk, be a sequence of zeros of some even

entire function G /∈ E4,+ of exponential type σ ≤ 1 for which on the rays {z : arg z = ϕj},

j ∈ {1; 2; 3; 4}, ϕ1 ∈ [0; π/2), ϕ2 ∈ [π/2; π), ϕ3 ∈ (π; 3π/2], ϕ4 ∈ (3π/2; 2π), the inequality
∣∣G(z)

∣∣ ≥ c4

(
1 + |z|

)−α
e| Im z|

holds with α < 1/2. Then the system
{

ψk : k ∈ N
}

is complete in L2
(
(0; 1); x4dx

)
.

Proof. Assume the converse. Then, according to Theorem 2, there exists a nonzero even entire

function Q ∈ E4,+ for which the sequence (ρk)k∈Z\{0} is a subsequence of zeros.

Let V(z) = Q(z)/G(z). Then V is an even entire function of order τ ≤ 1, for which by

Corollary 2 and Lemma 1, we get

∣∣V(z)
∣∣ ≤ c5

(
1 + |z|

)α+2

√
1 + | Im z|

, arg z = ϕj, j ∈ {1; 2; 3; 4}.

Since α + 2 < 5/2, according to the Phragmén-Lindelöf theorem, the function V is a polyno-

mial of degree ζ < 2. However, V is an even entire function, and therefore the function V is a

constant. Hence, Q(z) = c6G(z) and Q /∈ E4,+. Thus, we have a contradiction and the proof of

the theorem is completed.

Theorem 6. Let (ρk)k∈N
be a sequence of distinct nonzero complex numbers such that ρ2

k 6= ρ2
m

for k 6= m. Let a sequence (ρk)k∈Z\{0}, where ρ−k := −ρk, be a sequence of zeros of some even

entire function F /∈ E4,+ of exponential type σ ≤ 1 such that
∣∣F(x + iη)

∣∣ ≥ δ|x|−α, δ > 0, |x| > 1, (6)

for some α < 0 and η ∈ R. Then the system {ψk : k ∈ N} is complete in L2
(
(0; 1); x4dx

)
.

Proof. Let F /∈ E4,+ and the inequality (6) is true. Suppose, to the contrary, that the sys-

tem {ψk : k ∈ N} is not complete in L2
(
(0; 1); x4dx

)
. Then, by Theorem 2, there exists a

nonzero even entire function Q ∈ E4,+ which vanishes at the points ρk. However, the se-

quence (ρk)k∈Z\{0} is a sequence of zeros of an even entire function F(z) /∈ E4,+ of exponential

type σ ≤ 1. Therefore, T(z) = Q(z)/F(z) is an even entire function of order τ ≤ 1. Since

Q ∈ E4,+, taking into account Corollary 2 and Lemma 1, we obtain

∣∣Q(x + iη)
∣∣ ≤ c7

e|η|√
1 + |η|

(
1 +

√
x2 + η2

)2

, x ∈ R.

Using (6), we get ∣∣T(x + iη)
∣∣ ≤ c8

(
1 + |x|

)2+α
, x ∈ R.

In view of this, we have that T(z) is a polynomial of degree ζ < 2. Further, since T is an

even entire function, then T(z) = c9. Furthermore, F(z) = c10Q(z) and F(z) ∈ E4,+. This

contradiction concludes the proof of the theorem.
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Let n(t) be the number of points of the sequence (ρk)k∈N
⊂ C satisfying the inequality

|ρk| ≤ t, i.e. n(t) := ∑
|ρk |≤t

1, and let

N(r) :=
∫ r

0

n(t)

t
dt, r > 0.

Theorem 7. Let (ρk)k∈N
be an arbitrary sequence of distinct nonzero complex numbers. If

lim sup
r→+∞

(
N(r)− 2r

π
+

1

2
log r − 2 log(1 + r)

)
= +∞,

then the system {ψk : k ∈ N} is complete in L2
(
(0; 1); x4dx

)
.

Proof. It suffices to assume the incompleteness of the system {ψk : k ∈ N} and prove that

lim sup
r→+∞

(
N(r)− 2r

π
+

1

2
log r − 2 log(1 + r)

)
< +∞. (7)

By virtue of Theorem 2, there exists a nonzero even entire function Q ∈ E4,+ of exponen-

tial type σ ≤ 1 for which the sequence (ρk)k∈N
is a subsequence of zeros. We may consider

that Q(0) = 1. Then, consecutively applying the Jensen formula (see [8, p. 10], [9, p. 4316]),

Corollary 2 and Lemma 1, we obtain

N(r) ≤ 1

2π

∫ 2π

0
log

∣∣Q
(
reiϕ

)∣∣ dϕ

≤ c11 +
1

2π

∫ 2π

0

(
r| sin ϕ| − 1

2
log

(
1 + r| sin ϕ|

)
+ 2 log(1 + r)

)
dϕ

≤ c11 +
1

2π

∫ 2π

0

(
r| sin ϕ| − 1

2
log r − 1

2
log | sin ϕ|+ 2 log(1 + r)

)
dϕ

=
2r

π
− 1

2
log r + 2 log(1 + r) + c12, r > 0,

whence it follows (7). The theorem is proved.

Theorem 8. Let (ρk)k∈N
be a sequence of distinct nonzero complex numbers. Assume that

|ρk| ≤ ∆k + β + αk for 0 < ∆ <
π

2+π , −∆ < β < 1− 2∆
π (1+ π). Let a sequence (αk)k∈N

be such

that αk ≥ 0, αk = O(1) as k → +∞ and

∞

∑
k=1

|αk+1 − αk| < +∞,
∞

∑
k=1

αk

k
< +∞.

Then the system {ψk : k ∈ N} is complete in L2
(
(0; 1); x4dx

)
.

Proof. Let µk = ∆k + β + αk, k ∈ N, and

n1(t) = ∑
µk≤t

1, N1(r) =
∫ r

0

n1(t)

t
dt, r > 0.

Then n(t) ≥ n1(t), N(r) ≥ N1(r) and n1(t) = m for ∆m + β + αm ≤ t < ∆(m + 1) + β + αm+1(
n1(t) = 0 on (0; µ1)

)
. Let r ∈ [µs; µs+1). Then s = r

∆
+ O(1) as r → +∞.
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Therefore, under the assumptions of the theorem, by analogy with [7, p. 894] (see also

[6, p. 9]), we obtain

N1(r) ≥
s−1

∑
k=1

k log
∆(k + 1) + β

∆k + β
+ O(1)−

∣∣∣∣∣
s−1

∑
k=1

k

(
log

∆(k + 1) + β + αk+1

∆k + β + αk
− log

∆(k + 1) + β

∆k + β

)∣∣∣∣∣

≥ r

∆
−
(

1

2
+

β

∆

)
log r − c13

∞

∑
k=1

(
|αk+1−αk|+

αk

k

)
+ O(1) ≥ r

∆
−
(

1

2
+

β

∆

)
log r + O(1),

as r → +∞. In view of this, for 0 < ∆ <
π

2+π and −∆ < β < 1 − 2∆
π (1 + π), we get

lim sup
r→+∞

(
N(r)− 2r

π
+

1

2
log r − 2 log(1 + r)

)

≥ lim sup
r→+∞

(
N1(r)−

2r

π
+

1

2
log r − 2 log(1 + r)

)

≥ lim sup
r→+∞

(
r

∆
−

(
1

2
+

β

∆

)
log r − 2r

π
+

1

2
log r − 2 log(1 + r) + O(1)

)

≥ lim sup
r→+∞

(
r

(
1

∆
− 2

π

)
−

(
β

∆
+ 2

)
log(1 + r) + O(1)

)

≥ lim sup
r→+∞

(
r

(
1

∆
− 2

π
− β

∆
− 2

)
+ O(1)

)
= +∞.

Finally, according to Theorem 7, we obtain the required proposition. The proof of theorem

is completed.
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Хаць Р.В. Повнота систем функцiй Бесселя iндексу −5/2 // Карпатськi матем. публ. — 2024. —

Т.16, №1. — C. 93–102.

Нехай L2((0; 1); x4dx) — ваговий простiр Лебега всiх вимiрних функцiй f : (0; 1) → C, для

яких
∫ 1

0 t4| f (t)|2 dt < +∞, J−5/2 — функцiя Бесселя першого роду iндексу −5/2 i (ρk)k∈N —

послiдовнiсть рiзних вiдмiнних вiд нуля комплексних чисел. Знайдено необхiднi та достатнi

умови повноти системи
{

ρ2
k

√
xρk J−5/2(xρk) : k ∈ N

}
у просторi L2((0; 1); x4dx) в термiнах цiлої

функцiї, множина нулiв якої спiвпадає з послiдовнiстю (ρk)k∈N. При цьому, дослiджено iнте-

гральне зображення деякого класу E4,+ парних цiлих функцiй експоненцiйного типу σ ≤ 1. Це

доповнює аналогiчнi результати Б. Винницького, В. Дiльного, О. Шавали та автора статтi про

апроксимацiйнi властивостi систем функцiй Бесселя з вiд’ємним пiвцiлим iндексом, меншим

за −1.

Ключовi слова i фрази: функцiя Бесселя, теорема Пелi-Вiнера, теорема Фрагмена-Лiнде-

льофа, теорема Фубiнi, теорема Гурвiца, теорема Гана-Банаха, формула Єнсена, цiла функцiя

експоненцiйного типу, повна система.


