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Completeness of the systems
of Bessel functions of index —5/2

Khats’ R.V.

Let L?((0;1); x*dx) be the weighted Lebesgue space of all measurable functions f : (0;1) — C,
satisfying fol t4|f(t)|? dt < +oo. Let ]_5,, be the Bessel function of the first kind of index —5/2 and
(px) ke be a sequence of distinct nonzero complex numbers. Necessary and sufficient conditions for
the completeness of the system {p? ,/Xp]_5,2(xpx) : k € N} in the space L2((0;1); x*dx) are found
in terms of an entire function with the set of zeros coinciding with the sequence (pg)xen- In this
case, we study an integral representation of some class E4 ; of even entire functions of exponential
type o < 1. This complements similar results on approximation properties of the systems of Bessel
functions of negative half-integer index less than —1, due to B. Vynnyts'kyi, V. Dilnyi, O. Shavala
and the author.
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Introduction

Let L?(X) be the space of all measurable functions f : X — C on a measurable set X C R
with the norm

2
130 3= [ 1FG0) .
Let v € R and L?((0;1);¢7dt) be the weighted Lebesgue space of all measurable functions
f:(0;1) = C, satisfying
1
/O Y f (1) dt < +oo.
Let (see, for example, [2, p. 4], [12, p. 345], [22, p. 40])

00 (_1)k(z/2)v+2k

Ju(z) :k;o KT(v+k+1)

z:x+iy:rei‘P,

be the Bessel function of the first kind of index v € IR, where I' is the gamma function. By
Hurwitz’s theorem (see [2, p. 59], [22, p. 483]), for v > 1 the function J_, has infinitely many
real zeros and also 2[v] pairwise conjugate complex zeros, among them two pure imaginary
zeros, when [v] is an odd integer. Let p, k € IN, be the zeros of the function J_, for which
Impy > 0if pp € Cor pr > 0if pp € R.
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Since (see [12, p. 350], [22, p. 55]) v/z]_5/2(z) = —v/2/mz 2 (z* cosz — 3zsinz — 3cosz),
we have that the function p?,/Xp]_s5,2(xp) belongs to the space L? ((0;1); x*dx) for every
p € C. A system of elements {¢x : k € IN} in a separable Hilbert space H is called complete
(see [8, p. 131], [9, p. 4258]) if span {e; : k € N} = H.

Various approximation properties of the systems of Bessel functions has been studied in
many papers (see, for example, [1-7,10-22]). In particular, it is well known that the system
{Vx], (xpr) : k € N} is an orthogonal basis for the space L*(0;1) if v > —1 and (0k)cpy i
a sequence of positive zeros of |, (see [1,2,4,12,22]). It follows that if v > —1 and (0k)epn
is a sequence of positive zeros of J,, then the system {x "], (xpx) : k € N} is complete
and minimal in L2 ((0;1); x**1dx). The system {\/xJ, (xpx) : k € N} is also complete
(see [12, pp. 347, 356]) in L2(0; 1) if (0y),cp iS @ sequence of zeros of the function J;. Besides,
from [3] it follows thatif v > —1/2 and (o) is @ sequence of distinct positive numbers such
that o, < 7(k +v/2) for all sufficiently large k € IN, then the system {/x], (xpx) : k € N} is
complete in L%(0;1).

Basis properties (completeness, minimality, basicity) of the above systems of Bessel func-
tions and more general systems {x?~1\/xp; ], (xpk) : k € N} in the space L2 ((0;1); x*dx),
where v > 1/2, p € R and (o), is @ sequence of distinct nonzero complex numbers, have
been studied in [6,7,15-19]. Those results are formulated in terms of sequences of zeros of
functions from certain classes of entire functions.

Approximation properties of the systems of Bessel functions for v < —1, v € Z, were
investigated in [5,10,11,13,14,20,21]. In particular, at studying of one boundary value problem,
in [20] (see also [21]) it was proven that the system { Ok/X0k] =372 (xpx) 1 k € ]N} is complete
in the space L2 ((0;1); x*dx), and the system {pg/Xpr/_3/2 (xpx) : k € N\ {1}} is complete,
minimal and is not a basis in this space, where (Pk)kez\ {0}, P—k *= —pPk, is a sequence of zeros
of the function J_3,.

In addition, in [10] it was shown that the system {p?,/xpr] 5,2 (xp) : k € N\ {1;2} } is
complete and minimal in L2((0;1); x*dx), where (pi),cp is @ sequence of zeros of ]_5/,. Be-
sides, in [11] it was established that the system {pzfl/z\/x—pk]_v (xpx) : ke N\ {1,2;.. .;l}}
is complete in L2((0;1); x?1dx) if v = [ +1/2,1 € N and (pk),cp iS @ sequence of zeros
of J_,. However, the problem of completeness of this system in L2 ((0;1) ;xzv*ldx), when
v=1+1/2,1 € Nand (or)cp is an arbitrary sequence of distinct nonzero complex numbers,
remain open. In this direction, in [13] the authors obtained a criterion for the completeness and
minimality of the system {px\/Xpx]_3/2(xpk) : k € N} in L2 ((0; 1); x*dx) with an arbitrary se-
quence of nonzero complex numbers (o) In addition, in [14] it was proven that the system
{2~ 2(ok /X0 —3/2(xPk) — P1/XP1]—3/2(xp1)) : k € N\ {1} } is also complete and minimal in
L? ((0;1); x*dx), where (ox)c is @ sequence of distinct nonzero complex numbers such that
p2 # p2, for k # m.

In this paper, using methods of [5-7,9, 13-16], we study an integral representation of some
class E4; of even entire functions of exponential type ¢ < 1 (see Theorem 1) and find
necessary and sufficient conditions for the completeness of the system {¢; : k € IN}, where
Pr(x) := p2\/%0k]-5/2 (xpk), in the space L? ((0;1); x*dx) in terms of an entire function with
the set of zeros coinciding with the sequence of distinct nonzero complex numbers (k) eny
(see Theorems 2-8). This complements the results of papers [3,5,10,11,13,14,20,21].
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1 Preliminaries

An entire function G is said to be of exponential type o € [0; +c0) (see [8, p. 4], [9, p. 4262]),
if for any € > 0 there exists a constant ¢(¢) such that

G)| < c(e)expl(o +)2])

forallz € C.

Denote by PW?2 the set of all entire functions of exponential type ¢ € (0; +o0) whose nar-
rowing on R belongs to the space L*(R), and by PW2 , denote the class of even entire functions
from PW2. According to the Paley-Wiener theorem (see [8, p. 69], [9, p. 4263]), the class PW?>
coincides with the class of functions G admitting the representation

G(z) = /U e (t) dt, g € L*(—0;0),

—0

and the class PW2 | consists of the functions G representable in the form
o
G(z) = / cos(tz)g(t)dt, g € L2(0;0).
0

Moreover, ||g|[12(0,) = V2/ 7| Gl 12 (0;+00) and

2

s =2 [ ™ 6(2) cos(tz) d.

Let logt x = max (0;log x) for x > 0. Here and subsequently, by ¢, c,, ... we denote arbi-
trary positive constants. To prove our main results we need the following auxiliary lemmas.

Lemma 1 ([5, p. 6]). Let an entire function Q be defined by the formula

Q(z) = \/%/01 <—22t2 cos(tz) 4 3tzsin(tz) +3cos(tz)> q(t)dt, geL*0;1). (1)

Then forallz = x + iy = re'? € C, we have

elImz|

V14 |Imz|

and Q is an even entire function of exponential type o < 1.

Q)| < (1+2))%

Lemma 2 ([9, p. 4263]). Let Q be an entire function of exponential type o < 1 for which the
integral
+o0 Jog T
/ og" |Q()[ .
—0o0 1+ x2

exists and let (px ),y be a sequence of nonzero roots of the function Q(z). Then

1
Im —

' < —+o00.
kEN Pk
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2 Main results
Our principal results are the following statements.

Theorem 1. An entire function Q has the representation

7) = /0 VBT s (t2) Bt dt @)

with some function h € L? ((0;1); x*dx) if and only if it is an even entire function of exponen-

tial type o < 1 such that
2 1,
0(0) _3\/;/0 £2h(t) dt, 3)
/ Z)

_ 2 ! 4
— \/;/0 FAh(t) dt, @)

and the functionz=! (z71Q’ (z))/ belongs to the space PW% - If these conditions are fulfilled,

then
\/? /+oo L < ) cos(tz) dz.

Proof. Necessity. Let Q has the representation (2) with some function i € L? ((0;1); x*dx).

Since -
2 —z“t=cos(tz) + 3tzsin(tz) + 3 cos(tz
VT yalt) = 2 () 3tz5in(z) + dcos(tz)

\/7/ —2z2t2 cos(tz) + Btzsin(tz) + 3cos(tz)> t2h(t) dt = 3\/7/ t2h(t)

Therefore, by Lemma 1, the function Q is an even entire function of exponential type ¢ < 1,

and
Q'(z) = \/%/01 (zzt sin(tz) + zcos(tz)) th(t) dt,
@) - \/% /0 () de

Q'(2) _ \/z/l (tzsin(t2) +Cos(t2))t4h(t) dt, QZ(

(L&Y = 2 [ecostmmmrar, L( L) = |2 [ eostmptan

where g(t) := #2h(t). Since h € L? ((0;1); x*dx), we have q € L2(0;1), and in accordance with
the Paley-Wiener theorem, the functionz ™! (z71Q’ (z))/ belongs to the space Ple, I

Sufficiency. If all the conditions of the theorem hold, then from the formula for the inverse
Fourier cosine transformation it follows that the function

\F /+°°1< )cos(tz)dz

belongs to the space L?(0;1), and

<%>/ = \/%/01 zcos(tz)tq(t) dt.

we have
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Using Fubini’s theorem, we get

Q) Q)

z

= \/%/01 thq(t) dt /Ozwcos(tw) dw
= \/%/01 (tz sin(tz) + cos(tz) — 1)1‘217(1‘) dt
= \/%/01 (tzsin(tz) + cos(tz) — 1)t*h(t) dt,

where h(t) = t72g(t) € L?((0;1); x*dx). Further, using (4), we obtain

_ \/%/01 (tz2 sin(tz) +zcos(tz)) 4h(t) dt.

Furthermore, applying Fubini’s theorem, we get

Q(z) — Q(0) = \/%/01 th(t) dt /OZ <w cos(tw) + tw? sin(tw)) dw

1
=4/ %/ <—22t2 cos(tz) 4 3tzsin(tz) + 3 cos(tz) — 3) t2h(t) dt.
0

Hence, taking into account (3), we have

\/7/ 2 cos(tz) + 3tzsin(tz) + 3 cos(tz)) 2h(t) dt = / 22Vtz] s (t2)t4h(t) dt.

Thus, the theorem is proved. O

Let E4,+ be the class of entire functions Q that can be presented in the form (2) with some
functionh € L2 ((O; 1); x4dx) ,and let E4  be the class of even entire functions Q of exponential
type o < 1 such that conditions (3), (4) are fulfilled with i € L? ((0;1); x*dx) and the function
271 (z71Q/(2))  belongs to the space PW} .

Corollary 1. E; , = Ey ;.

Corollary 2. The class E4 coincides with a set of entire functions Q representing in
the form (1).

Remark 1. In [5], the class E;  was described in terms of the existence of solutions of some
differential equations. Also in [5], examples of entire functions Q € E4 ; are given.

Theorem 2. Let (pi).op be a sequence of nonzero complex numbers such that p% # p2 for
k # n. For a system {yy : k € N} to be incomplete in the space L? ((0;1); x*dx) it is necessary
and sufficient that a sequence (px)cz)\ 10y, Where p_i := —pi, k € IN, is a subsequence of zeros
of some nonzero entire function Q € E4 . .

Proof. According to Hahn-Banach theorem (see, e.g., [8, p. 131], [9, p. 4258]), the system
{4 : k € N} is incomplete in L? ((0;1); x*dx) if and only if there exists a nonzero function
h € L? ((0;1); x*dx) such that

1
/0 P%\/ X0k 5,2 (Xx) x4h(x) dx =0

for all k € IN. Hence, taking into account Theorem 1, we obtain the required proposition.
Theorem 2 is proved. O
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Theorem 3. Let (oi).cn be a sequence of distinct nonzero complex numbers such that
Impg| > 6 |pk| for all k € N and some 6 > 0. If a system {yy : k € N} is complete in
L? ((0;1); x*dx), then

Z = (5)
Proof. Suppose, to the contrary, that the system {yy : k € N} is not complete in the space
L? ((0;1); x*dx). Then, by Theorem 2, there exists a nonzero entire function Q € E4 for
which the sequence (0¢)iez\ {0} is a subsequence of zeros. By virtue of Corollary 2, the func-

tion Q is of the kind (1). Due to Lemma 1, we have |Q(x)| < ¢1(1+ ]x\)z for all x € R. This
implies

L
lok|

+o0 Jog™ }Q(x)}
/_Oo i dx < +o0.
Therefore, by Lemma 2, we get
1
Im —| < 4o0.
ken' Pk
Since [Im pg| > & |px|, 0 > 0, for all k € IN, and
1 I )
‘Im— = ]mpzkl >
Pk |lok| ok |
we have
=1
) i < 4o
=1 | ok
This contradicts condition (5). Thus, the theorem is proved. O

Theorem 4. Let (px),cn De a sequence of distinct nonzero complex numbers such thatp% # 02,
for k # m. Let a sequence (0k)iez\ (0}, Where p_i := —pi, be a sequence of zeros of some
even entire function G of exponential type ¢ < 1 for which on the rays {z : argz = ¢;},
j€{1,2;3;4}, p1 € [0;71/2), @3 € [11/2;71), 3 € (171;370/2], @4 € (37/2;27T), we have

|G(z)| = e2(1+ \z])ze“mz‘.
Then the system {4 : k € N} is complete in L% ((0;1); x*dx).

Proof. Assume the converse. Then, according to Theorem 2, there exists a nonzero even entire
function Q € E4 . for which the sequence (px) 7\ (o} is a subsequence of zeros.

Let V(z) = Q(z)/G(z). Then V is an even entire function of order T < 1, for which by
Corollary 2 and Lemma 1, we obtain

1
Vv < B e a4 = @i,
V(o) < o angz =g

Therefore, according to the Phragmén-Lindelof theorem (see [8, p. 38], [9, p. 4263]), we get
V(z) = 0. Hence Q(z) = 0. This contradiction proves the theorem. O

j€{1,2;3;4}.
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Corollary 3. Let (ox),on be a sequence of zeros of the function |_5,,. Then the system
{¢r : k € N} is complete in L2 ((0;1); x*dx).

Proof. Indeed, a sequence (pi)icz\ [0y, Where p_ = —py, is a sequence of zeros of an en-
tire function G(z) = —z?cosz + 3zsinz + 3 cos z, and this function satisfies the conditions of
Theorem 4. Therefore, a system {yy : k € N} is complete in L? ((0;1); x*dx). Corollary 3 is

proved. ]

Theorem 5. Let (px),y be a sequence of distinct nonzero complex numbers such that p? # p?,
for k # m. Let a sequence (py) kez\ {0}/ where p_j := —py, be a sequence of zeros of some even
entire function G ¢ E4 . of exponential type o < 1 for which on the rays {z : argz = ¢;},
j€{1,2;3;4}, p1 € [0;71/2), @2 € [1/2; ), @3 € (71;371/2], ¢4 € (371/2;27), the inequality

1G(2)| > ca(1+ |2]) "eltm=
holds with « < 1/2. Then the system {y : k € N} is complete in L? ((0;1); x*dx).

Proof. Assume the converse. Then, according to Theorem 2, there exists a nonzero even entire
function Q € E4 . for which the sequence (px) ez, {0} is a subsequence of zeros.

Let V(z) = Q(z)/G(z). Then V is an even entire function of order T < 1, for which by
Corollary 2 and Lemma 1, we get

(1 + |Z|)IX+2

V(z)] <5 i [imz] argz = @j,
Since a + 2 < 5/2, according to the Phragmén-Lindelof theorem, the function V is a polyno-
mial of degree { < 2. However, V is an even entire function, and therefore the function V' is a
constant. Hence, Q(z) = c6G(z) and Q ¢ E4 ;. Thus, we have a contradiction and the proof of
the theorem is completed. O

j€{1,2;3;4}.

Theorem 6. Let (i), be a sequence of distinct nonzero complex numbers such that p% # 02,

fork # m. Let a sequence (pk)cz\ o Where p_i := —px, be a sequence of zeros of some even
entire function F ¢ E4 . of exponential type o < 1 such that
|F(x+in)| >6x|™%, 6>0, |x|>1, (6)

for some a < 0 and ;7 € R. Then the system {{; : k € N} is complete in L? ((0;1); x*dx).

Proof. Let F ¢ E, and the inequality (6) is true. Suppose, to the contrary, that the sys-
tem {y; : k € N} is not complete in L? ((0;1); x*dx). Then, by Theorem 2, there exists a
nonzero even entire function Q € E4 which vanishes at the points p;. However, the se-
quence (0x) ez (o} 18 @ sequence of zeros of an even entire function F(z) ¢ E4 4 of exponential
type ¢ < 1. Therefore, T(z) = Q(z)/F(z) is an even entire function of order T < 1. Since
Q € E4 4, taking into account Corollary 2 and Lemma 1, we obtain

Il 2
|Q(x +in)| gwﬁ <1+\/x2~|—172> , x€R

Using (6), we get

I T(x + )| < es(1+]x])™
In view of this, we have that T(z) is a polynomial of degree { < 2. Further, since T is an
even entire function, then T(z) = c¢9. Furthermore, F(z) = ¢10Q(z) and F(z) € E4. This

contradiction concludes the proof of the theorem. O

, x€R.
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Let n(t) be the number of points of the sequence (o), .n C C satisfying the inequality

lox| <t ie.n(t):= ¥ 1,and let
lox| <t

Theorem 7. Let (pox),.n be an arbitrary sequence of distinct nonzero complex numbers. If

2 1
lim sup <N(1’) — Er + Elogr —2log(1+ r)) = +o00,

r—+oo
then the system {y : k € N} is complete in L? ((0;1); x*dx).
Proof. Tt suffices to assume the incompleteness of the system { : k € IN} and prove that
. 2r 1
lim sup <N(r) — — + zlogr—2log(1+ r)) < Hoc0. (7)
r—+00 7T 2

By virtue of Theorem 2, there exists a nonzero even entire function Q € E, of exponen-
tial type o < 1 for which the sequence (px ),y is a subsequence of zeros. We may consider
that Q(0) = 1. Then, consecutively applying the Jensen formula (see [8, p. 10], [9, p. 4316]),
Corollary 2 and Lemma 1, we obtain

N0 < 5= [ log Qe dg

T 2r
27‘[
<c11—1——/ smq)|——log (1—{—r|smq)|)+2log(1—|—r)) do

27‘[
<011—1——/ smq)|——logr——log|smq)|+210g(1+r)) dg

2 1
= Er - —logr—{—2log(1 +7)+cp, >0,

whence it follows (7). The theorem is proved. U

Theorem 8. Let (o), be a sequence of distinct nonzero complex numbers. Assume that
okl S Ak+B+apfor0 <A< 77, —A<B<1— 28 (14 7). Let a sequence (). be such
that o > 0, 0 = O(1) ask — +o0 and

oo (e.9) k
Z |le+1 —le| < o0, Z ?
=1 =1

Then the system {i; : k € N} is complete in L? ((0;1); x*dx).

Proof. Let uy = Ak + B+ ay, k € N, and

=Y 1 N(= /Or nlt(t) dt, r>0.

<t

Then n(t) > ny(t), N(r) > Nyi(r) and ny(t) = mfor Am+ B+ ap <t < A(m+1)+ B+ apyi1
(n1(t) =0 on (0;p41)). Letr € [ps; pis11). Thens = & 4+ O(1) as r — +o0.
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Therefore, under the assumptions of the theorem, by analogy with [7, p. 894] (see also
[6, p- 9]), we obtain

1_1 b Y o+ % S
ZA <2+A>logr c13k;<|(xk+1 | + k)—l—O(l) A <2+A>logr+0(1),

Ak+1)+ B+« Ak+1)+p
<log Ak+/3+ockk+l_lo A+ B )'

asr — +o0. In view of this, for 0 <A < ;77— and —A < B <1 - 28 (1 4+ 1), we get

limsup<N(r) Lz + llogr —2log(1 + r))

r—+oco
> lim sup <N1 ——+llogr—210g(1—|—r))
r——+00
> lim sup (%— <— )1 gr—2—+—10gr—210g(1+r)+0(1)>
r—+oco
> limsup | r ( <— - —) (i +2> log(1+7)+0(1 ))
r——+00

> —__Z_£F_ —+ = .
hrmsup< < 2) O(l)) —+o0

Finally, according to Theorem 7, we obtain the required proposition. The proof of theorem
is completed. O
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Hexat L?((0;1); x*dx) — Barosuit mpoctip Ae6era Becix Bumipamx dyskmiit f : (0;1) — C, arst
sanx [ 4[f(1)[2dt < 40, ] 5/, — dpynxuis Becceast meprmoro poay iHaexcy —5/2 i (ox)xen —
ITOCAIAOBHICTD Pi3HMX BiAMIHHMX BiA HyAsI KOMIIAEKCHMX UmceA. 3HalfAeHO HeoOXirHI Ta AocTaTHI
yMoBy noBHOTH cuctemut { p2 /Xpi]_5/2(xpi) : k € N} y mpocropi L2((0;1); x*dx) B Tepminax minoi
JyHKIIT, MHOXIHA HyAIB SIKOI CITIBIIaAa€ 3 TOCAIAOBHICTIO () )renN- IIpyt mbOMyY, AOCAiAXEHO iHTe-
rpaabHe 306pakeHHsI AesTKOTO Kaacy E4 | mapHMX miamx yHKIIiN excrioreHtilHoro Tvmy o < 1. Lle
MOTIOBHIOE aHaAoriuHi pesyabTaTit b. Bunmamipkoro, B. Aiabsoro, O. IllaBaan Ta aBTOpa CTaTTi PO
aIpOKCMMAaliliHi BAACTMBOCTI crcTeM pyHKIIN Becceast 3 Bia'€éMHMM MiBLIAMM iHAEKCOM, MEHIIIMM
3a —1.

Knrouosi croea i ¢ppasu: dpysxiis becceas:, Teopema Ileai-Binepa, Teopema ®dparmena-Ainae-
Aboda, Teopema Dy6iHi, Teopema I'ypsilia, Teopema 'ana-banaxa, dpopmyaa EHceHa, Iira PyHKIIisST
€KCTIOHeHIIiIHOTo TUITY, TIOBHA CUCTeMa.



