References

  1. Azizbayov E.I. The nonlocal inverse problem of the identification of the lowest coefficient and the right-hand side in a second-order parabolic equation with integral conditions. Bound. Value Probl. 2019, 11, 1–19. doi:10.1186/s13661-019-1126-z
  2. Bertero M., Piana M. Inverse problems in biomedical imaging: Modeling and methods of solution. In: Complex System in Biomedicine, 2006.
  3. Bouchouev I., Isakov V. Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets. Inverse Problems 1999, 15 (3), R95. doi:10.1088/0266-5611/15/3/201
  4. Chen Q., Liu J. Solving an inverse parabolic problem by optimization from final measurement data. J. Comput. Appl. Math. 2006, 193 (1), 183–203. doi:10.1016/j.cam.2005.06.003
  5. Deng Z.C., Yang L. An inverse problem of identifying the coefficient of first-order in a degenerate parabolic equation. J. Comput. Appl. Math. 2011, 235 (15), 4404–4417. doi:10.1016/j.cam.2011.04.006
  6. Di Blasio G., Lorenzi A. An Identification Problem in Age-Dependent Population Diffusion. Numer. Funct. Anal. Optim. 2013, 34 (1), 36–73. doi:10.1080/01630563.2012.677919
  7. Durdiev D.K., Zhumaev Zh.Zh. Problem of determining the thermal memory of a conducting medium. Differential Equations 2020, 56 (6), 785–796. doi:10.1134/S0012266120060117
  8. Huntul M.J., Lesnic D. Determination of time-dependent coefficients for a weakly degenerate heat equation. CMES 2020, 123 (2), 475–494. doi:10.32604/cmes.2020.08791
  9. Huntul M.J., Lesnic D., Hussein M.S. Reconstruction of time-dependent coefficients from heat moments. Appl. Math. Comput. 2017, 301, 233–253. doi:10.1016/j.amc.2016.12.028
  10. Hussein E.M.A. The physical and mathematical aspects of inverse problems in radiation detection and applications. Applied Radiation and Isotopes 2012, 70 (7), 1131–1135. doi:10.1016/j.apradiso.2011.11.041
  11. Hussein M.S., Lesnic D., Ivanchov M.I. Simultaneous determination of timedependent coefficients in the heat equation. Comput. Math. Appl. 2014, 67 (5), 1065–1091. doi:10.1016/j.camwa.2014.01.004
  12. Hussein M., Lesnic D., Ivanchov M., Snitko H. Multiple time-dependent coefficient identification thermal problems with a free boundary. Appl. Numer. Math. 2016, 99, 24–50. doi:10.1016/j.apnum.2015.09.001
  13. Hussein M., Lesnic D., Ismailov M. An inverse problem of finding the time-dependent diffusion coefficient from an integral condition. Math. Methods Appl. Sci. 2016, 39 (5), 963–980. doi:10.1002/mma.3482
  14. Hussein M.S., Lesnic D., Kamynin V., Kostin A. Direct and inverse source problems for degenerate parabolic equations. J. Inverse Ill-Posed Probl. 2020, 28 (3), 425–448. doi:10.1515/jiip-2019-0046
  15. Huzyk N. Inverse problem of determining the coefficients in a degenerate parabolic equation. Electron. J. Differential Equations 2014, 2014 (172), 1–11.
  16. Huzyk N. Determination of the Lower Coefficient in a Parabolic Equation with Strong Power Degeneration. Ukrainian Math. J. 2016, 68 (7), 1049–1061. doi:10.1007/s11253-016-1276-4
  17. Huzyk N. Coefficient Inverse Problem For The Degenerate Parabolic Equation. Differ. Equ. Appl. 2021, 13 (3), 243–255. doi:10.7153/dea-2021-13-14
  18. Ismailov M., Kanca F., Lesnic D. Determination of a time-dependent heat source under nonlocal boundary and integral overdetermination conditions. Appl. Math. Comput. 2011, 218 (8), 4138–4146. doi:10.1016/j.amc.2011.09.044
  19. Ivanchov M. Inverse problems for equations of parabolic type. VNTL Publishers, Lviv, 2003.
  20. Ivanchov M., Saldina N. An inverse problem for strongly degenerate heat equation. J. Inverse Ill-Posed Probl. 2006, 14 (5), 465–480. doi:10.1515/156939406778247598
  21. Kabanikhin S. Inverse and ill-posed problems: theory and applications. De Gruyter, 2012.
  22. Kaltenbacher B., Klibanov M. An Inverse Problem for a Nonlinear Parabolic Equation with Applications in Population Dynamics and Magnetics. SIAM J. Math. Anal. 2008, 39 (6), 1863–1889. doi:10.1137/070685907
  23. Kamynin V.L. On inverse problems for strongly degenerate parabolic equations under the integral observation condition. Comput. Math. Math. Phys. 2018, 58 (12), 2002–2017. doi:10.31857/S004446690003554-0
  24. Kanca F., Ismailov M. The inverse problem of finding the time-dependent diffusion coefficient of the heat equation from integral overdetermination data. Inverse Probl. Sci. Eng. 2012, 20 (4), 463–476. doi:10.1080/17415977.2011.629093
  25. Kinash N. An inverse problem for a 2D parabolic equation with nonlocal overdetermination condition. Carpathian Math. Publ. 2016, 8 (1), 107–117. doi:10.15330/cmp.8.1.107-117
  26. Lopushansky A., Lopushanska H. Inverse problem with two unknown time-dependent functions for \(2b\)-order differential equation with fractional derivative. Carpathian Math. Publ. 2022, 14 (1), 213–222. doi:10.15330/cmp.14.1.213-222
  27. Protsakh N. Asymptotic Behavior of Solution of the Inverse Problem for Weakly Nonlinear Ultraparabolic Equation. Carpathian Math. Publ. 2013, 5 (2), 326–335. doi:10.15330/cmp.5.2.326-335
  28. Ranran Li, Zhiyuan Li Identifying unknown source in degenerate parabolic equation from final observation. Inverse Probl. Sci. Eng. 2020, 29 (7), 1012–1031. doi:10.1080/17415977.2020.1817005
  29. Rao Xiao-Bo, Wang Yu-Xin, Qian Kun, Deng Zui-Cha, Yang Liu Numerical simulation for an inverse source problem in a degenerate parabolic equation. Appl. Math. Model. 2015, 39 (23–24), 7537–7553. doi:10.1016/j.apm.2015.03.016
  30. Saldina N. An inverse problem for a generally degenerate heat equation. J. Lviv Polytech. Nat. Univ. Phys. and Math. Sci. 2006, 566, 59–67.
  31. Tomas J., Lesnic D. Determination of a spacewise dependent heat source. J. Comput. Appl. Math. 2007, 209 (1), 66–80. doi:10.1016/j.cam.2006.10.026