References
- Bari N.K., Stechkin S.B. The best approximations and differential
properties of two conjugate functions. Trans. Moscow Math. Soc.
1956, 5, 483–522. (in Russian)
- Fedunyk-Yaremchuk O.V., Hembars’ka S.B. Estimates of
approximative characteristics of the classes \(B^{\Omega}_{p,\theta}\) of periodic
functions of several variables with given majorant of mixed moduli of
continuity in the space \(L_{q}\).
Carpathian Math. Publ. 2019, 11 (2), 281–295.
doi:10.15330/cmp.11.2.281-295
- Fedunyk-Yaremchuk O.V., Hembars’kyi M.V., Hembars’ka S.B.
Approximative characteristics of the Nikol’skii-Besov-type classes
of periodic functions in the space \(B_{\infty,1}\). Carpathian Math. Publ.
2020, 12 (2), 376–391.
doi:10.15330/cmp.12.2.376-391
- Fedunyk-Yaremchuk O.V., Solich K.V. Estimates of approximative
characteristics of the classes \(B^{\Omega}_{p,\theta}\) of periodic
functions of many variables with given majorant of mixed continuity
moduli in the space \(L_{\infty}\). J. Math. Sci. (N.Y.)
2018, 231 (1), 28–40. doi:10.1007/s10958-018-3803-3
(translation of Ukr. Mat. Visn. 2017, 14 (3), 345–360.
(in Ukrainian))
- Hardy G.H., Littlewood J.E., Polya G. Inequalities. Cambridge Univ.
Press, Cambridge, 1934.
- Hembars’ka S.B., Fedunyk-Yaremchuk O.V. Approximation
characteristics of the Nikolsky-Besov-type classes of periodic single-
and multivariable functions in the \(B_{1,1}\) space. J. Math. Sci. (N.Y.)
2021, 259 (1), 75–87. doi:10.1007/s10958-021-05600-2
(translation of Ukr. Mat. Visn. 2021, 18 (3), 289–405.
(in Ukrainian))
- Jackson D. Certain problem of closest approximation. Bull.
Amer. Math. Soc. 1933, 39, 889–906.
- Konograi A.F. Estimates of the approximation characteristics of
the classes \(B^{\Omega}_{p,\theta}\)
of periodic functions of several variables with given majorant of mixed
moduli of continuity. Math. Notes 2014, 95 (5),
656–189. doi:10.1134/S0001434614050095 (translation of Mat. Zametki
2014, 95 (5), 734–749. doi:10.4213/mzm10118 (in
Russian))
- Lizorkin P.I., Nikol’skii S.M. Spaces of functions with mixed
smoothness from the decomposition point of view. Proc. Steklov
Inst. Math. 1990, 187, 163–184. (translation of Tr.
Mat. Inst. Steklova 1989, 187, 143–161. (in
Russian))
- Nikol’skii S.M. Approximation of Functions of Several Variables and
Embedding Theorems. Nauka, Moscow, 1969. (in Russian)
- Nikol’skii S.M. Inequalities for entire functions of finite
degree and their application in the theory of differentiable functions
of severaly variables. Tr. Mat. Inst. Steklova 1951,
38, 244–278. (in Russian)
- Pustovoitov N.N. Approximation of multidimensional functions with
a given majorant of mixed moduli of continuity. Math. Notes 1999,
65 (1), 89–98. doi:10.1007/BF02675013 (translation of
Mat. Zametki 1999, 65 (1), 107–117. doi:10.4213/mzm1032
(in Russian))
- Pustovoitov N.N. On the approximation and characterization of
periodic functions of many variables, whose majorant of mixed continuity
moduli has a special form. Anal. Math. 2003, 29,
201–218. doi:10.1023/A:1025415204826 (in Russian)
- Pustovoitov N.N. Representation and approximation of periodic
functions of several variables with given mixed modulus of
continuity. Anal. Math. 1994, 20, 35–48.
doi:10.1007/BF01908917 (in Russian)
- Pustovoitov N.N. The orthowidths of classes of multidimensional
periodic functions, for which the majorant of mixed continuity moduli
contains power and logarithmic multipliers. Anal. Math. 2008,
34, 187–224. doi:10.1007/s10476-008-0303-6 (in
Russian)
- Romanyuk A.S. Approximation of classes of periodic functions of
several variables. Ukrainian Math. J. 1992, 44
(5), 596–606. doi:10.1007/BF01056698 (translation of Ukrain. Mat. Zh.
1992, 44 (5), 662–672. (in Russian))
- Romanyuk A.S. Best approximations and widths of classes of
periodic functions of several variables. Math. Sb. 2008,
199 (2), 253–275. doi:10.1070/SM2008v199n02ABEH003918
(translation of Math. Sb. 2008, 199 (2), 93–114.
doi:10.4213/sm3685 (in Russian))
- Romanyuk A.S. Diameters and best approximation of the classes
\(B^r_{p,\theta}\) of periodic
functions of several variables. Anal. Math. 2011,
37, 181–213. doi:10.1007/s10476-011-0303-9 (in
Russian)
- Stasyuk S.A. Approximation by Fourier sums and the Kolmogorov
widths for the classes \(MB^{\Omega}_{p,\theta}\) of periodic
functions of several variables. Tr. Inst. Mat. Mekh. 2014,
20 (1), 247–257. (in Russian)
- Stasyuk S.A. Best approximations of periodic functions of several
variables from the classes \(B^{\Omega}_{p,\theta}\). Math. Notes
2010, 87 (1–2), 102–114. doi:10.1134/S000143461001013X
(translation of Mat. Zametki 2010, 87 (1), 108–121.
doi:10.4213/mzm4053 (in Russian))
- Stasyuk S.A., Fedunyk O.V. Approximation characteristics of the
classes \(B^{\Omega}_{p,\theta}\) of
periodic functions of many variables. Ukrainian Math. J. 2006,
58 (5), 779–793. doi:10.1007/s11253-006-0101-x
(translation of Ukrain. Mat. Zh. 2006, 58 (5), 692–704.
(in Ukrainian))
- Yongsheng S., Heping W. Representation and approximation of
multivariate periodic functions with bounded mixed moduli of
smoothness. Tr. Mat. Inst. Steklova 1997, 219,
356–377.
- Temlyakov V.N. Approximation of functions with bounded mixed
derivative. Proc. Steklov Inst. Math. 1989, 178,
1–121. (translation of Tr. Mat. Inst. Steklova 1986,
178, 3–113. (in Russian))
- Temlyakov V.N. Diameters of some classes of functions of several
variables. Dokl. Akad. Nauk SSSR 1982, 267 (2),
314–317. (in Russian)
- Temlyakov V.N. Estimates of the asymptotic characteristics of
classes of functions with bounded mixed derivative or difference.
Proc. Steklov Inst. Math. 1990, 189, 161–197.
(translation of Tr. Mat. Inst. Steklova 1989, 189,
138–168. (in Russian))