References

  1. Burdak Z. On decomposition of pairs of commuting isometries. Ann. Polon. Math. 2004, 84 (2), 121–135. doi:10.4064/ap84-2-3
  2. Catepillán X., Szymański W. A model of a family of power partial isometries. Far East J. Math. Sci. 1996, 4, 117–124.
  3. Halmos P.R., Wallen L.J. Powers of partial isometries. Indiana Univ. Math. J. 1970, 19 (8), 657–663.
  4. Huef A., Raeburn I., Tolich I. Structure theorems for star-commuting power partial isometries. Linear Algebra Appl. 2015, 481, 107–114. doi:10.1016/j.laa.2015.04.024
  5. de Jeu M., Pinto P.R. The structure of doubly non-commuting isometries. Adv. Math. 2020, 368, 107–149. doi:10.1016/j.aim.2020.107149
  6. Popescu G. Doubly \(\Lambda\)-commuting row isometries, universal models, and classification. J. Funct. Anal. 279 (12), 108798. doi:10.1016/j.jfa.2020.108798
  7. Proskurin D. Stability of a Special Class of qij-CCR and Extensions of Higher-Dimensional Noncommutative Tori. Lett. Math. Phys. 2000, 52, 165–175. doi:10.1023/A:1007668304707
  8. Sarkar J. Wold decomposition for doubly commuting isometries. Linear Algebra Appl. 2014, 445, 289–301. doi:10.1016/j.laa.2013.12.011
  9. Slociński W. On the Wold-type decomposition of a pair of commuting isometries. Ann. Polon. Math. 1980, 37, 255–262.
  10. Weber M. On \(C^*\)-algebras generated by isometries with twisted commutation relations. J. Funct. Anal. 2013, 264 (8), 1975–2004. doi:10.1016/j.jfa.2013.02.001