References

  1. Alhevaz A., Baghipur M., Ganie H.A., Das K.S. Bounds and extremal graphs for Harary energy. Discrete Math. Algorithms Appl. 2022, 14 (5), 2150149. doi:10.1142/S1793830921501494
  2. Alhevaz A., Baghipur M., Pirzada S., Shang Y. Some inequalities involving the distance signless Laplacian eigenvalues of graphs. Trans. Comb. 2021, 10 (1), 9–29.
  3. Alhevaz A., Baghipur M., Ramane H.S. Computing the reciprocal distance signless Laplacian eigenvalues and energy of graphs. Matematiche (Catania) 2019, 74, 49–73.
  4. Aouchiche M., Hallaoui I.El. Minimum values of the second largest \(Q\)-eigenvalue. Discrete Appl. Math. 2022, 306, 46–51.
  5. Aouchiche M., Hansen P. Distance spectra of graphs: a survey. Linear Algebra Appl. 2014, 458, 301–386. doi:10.1016/j.laa.2014.06.010
  6. Aouchiche M., Hansen P. Two Laplacians for the distance matrix of a graph. Linear Algebra Appl. 2013, 439 (1), 21–33. doi:10.1016/j.laa.2013.02.030
  7. Aouchiche M., Hansen P. Some properties of the distance Laplacian eigenvalues a graph. Czechoslovak Math. J. 2014, 64 (139), 751–761.
  8. Aouchiche M., Hansen P. On the distance signless Laplacian of a graph. Linear Multilinear Algebra 2016, 64 (6), 1113–1123. doi:10.1080/03081087.2015.1073215
  9. Aouchiche M., Hansen P., Lucas C. On the extremal values of the second largest \(Q\)-eigenvalue. Linear Algebra Appl. 2011, 435, 2591–2606. doi:10.1016/j.laa.2011.03.051
  10. Baghipur M., Ghorbani M., Ganie H.A., Shang Y. On the Second-Largest Reciprocal Distance Signless Laplacian Eigenvalue. Mathematics 2021, 9, 512. doi:10.3390/math9050512
  11. Bapat R., Panda S.K. The spectral radius of the reciprocal Distance Laplacian matrix of a graph. Bull. Iranian Math. Soc. 2018, 44 (4), 1211–1216. doi:10.1007/s41980-018-0084-z
  12. Chang A., Huang Q. Ordering trees by their largest eigenvalues. Linear Algebra Appl. 2003, 370, 175–184.
  13. Cui Z., Liu B. On Harary matrix, Harary index and Harary energy. MATCH Commun. Math. Comput. Chem. 2012, 68 (3), 815–823.
  14. Cvetković D., Simić S.K. Towards a spectral theory of graphs based on the signless Laplacian I. Publ. Inst. Math. (Beograd) (N.S.) 2009, 85 (99), 19–33. doi:10.2298/PIM0999019C
  15. Cvetković D., Simić S.K. Towards a spectral theory of graphs based on the signless Laplacian II. Linear Algebra Appl. 2010, 432, 2257–2272. doi:10.1016/j.laa.2009.05.020
  16. Cvetković D., Simić S.K. Towards a spectral theory of graphs based on the signless Laplacian III. Appl. Anal. Discrete Math. 2010, 4 (1), 156–166. doi:10.2298/AADM1000001C
  17. Cvetković D.M., Rowlison P., Simić S. An Introduction to Theory of Graph spectra. Cambridge University Press, Cambridge, 2010.
  18. Chartrand G., Zhang P. Introduction to Graph Theory. Tata McGraw-Hill, New Delhi, 2006.
  19. Ganie H.A. On distance Laplacian spectrum (energy) of graphs. Discrete Math. Algorithms Appl. 2020, 12 (5), 2050061. doi:10.1142/S1793830920500615
  20. Ganie H.A. On the distance Laplacian energy ordering of tree. Appl. Math. Comput. 2021, 394 (1), 125762. doi:10.1016/j.amc.2020.125762
  21. Hofmeister M. On the two largest eigenvalues of trees. Linear Algebra Appl. 1997, 260, 43–59. doi:10.1016/S0024-3795(97)80004-3
  22. Khan S., Pirzada S., Shang Y. On the sum and spread of reciprocal distance Laplacian eigenvalues of graphs in terms of Harary index. Symmetry 2022, 14 (9), 1937. doi:10.3390/sym14091937.
  23. Lei X., Wang J., Brunetti M. Graphs whose second largest signless Laplacian eigenvalue does not exceed \(2+\sqrt{2}\). Linear Algebra Appl. 2020, 603, 242–264. doi:10.1016/j.laa.2020.05.034
  24. Li J., Guo J.-M., Shiu W.C. On the second largest Laplacian eigenvalues of graphs. Linear Algebra Appl. 2013, 438 (5), 2438–2446. doi:10.1016/j.laa.2012.10.047
  25. Lin W., Guo X. Ordering trees by their largest eigenvalues. Linear Algebra Appl. 2006, 418 (2–3), 450–456. doi:10.1016/j.laa.2006.02.035
  26. Lin H., Zhou B. On the distance Laplacian spectral radius of graphs. Linear Algebra Appl. 2015, 475, 265–275. doi:10.1016/j.laa.2015.02.033
  27. Medina L., Trigo M. Upper bounds and lower bounds for the spectral radius of reciprocal distance, reciprocal distance Laplacian and reciprocal distance signless Laplacian matrices. Linear Algebra Appl. 2021, 609, 386–412.
  28. Medina L., Trigo M. Bounds on reciprocal distance, reciprocal distance Laplacian energies of a graph. Linear Multilinear Algebra 2020, 70 (16), 3097–3118. doi:10.1080/03081087.2020.1825607
  29. Nath M., Paul S. On distance Laplacian spectra of graphs. Linear Algebra Appl. 2014, 460, 97–110. doi:10.1016/j.laa.2014.07.025
  30. Rather B.A., Ganie H.A., Shang Y. Distance Laplacian eigenvalues of sun graphs. Appl. Math. Comp. 2023, 445, 127847. doi:10.1016/j.amc.2023.127847
  31. Stevanović D. Bounding the largest eigenvalue of trees in terms of the largest vertex degree. Linear Algebra Appl. 2003, 360, 35–42.
  32. Shamsher T., Bhat M.A., Pirzada S., Shang Y. Ordering of minimal energies in unicyclic signed graphs. Rev. Un. Mat. Argentina 2023, 65 (1), 119–133. doi:10.33044/revuma.2565
  33. Wu Y., Zhang H., Wang B. Graphs with fourth largest signless-Laplacian eigenvalue less than two. Ars Combin. 2013, 111, 289–303.