References

  1. Acar Ö., Aydi H., De la Sen M. New Fixed Point Results via a Graph Structure. Mathematics 2021, 9, 1013. doi:10.3390/math9091013
  2. Acar Ö. Some fixed-Point results via mix-type contractive condition. J. Funct. Spaces 2021, 2021, article ID 5512254. doi:10.1155/2021/5512254
  3. Assad N.A., Kirk W.A. Fixed point theorems for set-valued mappings of contractive type. Pacific J. Math. 1972, 43 (3), 553–562. doi:10.2140/pjm.1972.43.553
  4. Banach S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3 (1), 133–181.
  5. Berzig M. Generalization of the Banach contraction principle. arXiv:1310.0995, 2013. doi:10.48550/arXiv.1310.0995
  6. Caristi J. Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 1976, 215, 241–251. doi:10.1090/S0002-9947-1976-0394329-4
  7. Choudhury B.S., Bandyopadhyay C. A new multivalued contraction and stability of its fixed point sets. J. Egyptian Math. Soc. 2015, 23 (2), 321–325. doi:10.1016/j.joems.2014.05.004
  8. Covitz H., Nadler S.B. Multi-valued contraction mappings in generalized metric spaces. Israel J. Math. 1970, 8 (1), 5–11. doi:10.1007/BF02771543
  9. Darbo G. Punti uniti in trasformazioni a codominio non compatto. Rend. Semin. Mat. Univ. Padova 1955, 24, 84–92.
  10. Feng Y., Liu S. Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings. J. Math. Anal. Appl. 2006, 317 (1), 103–112. doi:10.1016/j.jmaa.2005.12.004
  11. Fraser R.B., Nadler S.B. Sequences of contractive maps and fixed points. Pacific J. Math. 1969, 31 (3), 659–667. doi:10.2140/pjm.1969.31.659
  12. Kadelburg Z., Radenovıc S. Notes on some recent papers concerning F-contractions in b-metric spaces. Constr. Math. Anal. 2018, 1 (2), 108–112. doi:10.33205/cma.468813
  13. Karakaya V., Sekman D., Şimşek N. On behavior of Darbo fixed point theorem under function sequences. J. Nonlinear Convex Anal. 2019, 20 (11), 2313–2319.
  14. Karakaya V., Sekman D. An application of function sequences to the Darbo's theorem with integral type transformations. J. Math. Ext. 2020, 14 (4), 159–168.
  15. Karakaya V., Şimşek N., Sekman D. On F-weak contraction of generalized multivalued integral type mappings with alpha-admissible. Sahand Commun. Math. Anal. 2020, 17 (1), 57–67. doi:10.22130/SCMA.2018.83065.407
  16. Karapınar E., De la Sen M., Fulga A. A note on the Górnicki-Proinov type contraction. J. Funct. Spaces 2021, 2021, article ID 6686644. doi:10.1155/2021/6686644
  17. Kirk W.A. Fixed points of asymptotic contractions. J. Math. Anal. Appl. 2003, 277 (2), 645–650. doi:10.1016/S0022-247X(02)00612-1
  18. Kirk W.A., Xu H.K. Asymptotic pointwise contractions. Nonlinear Anal. 2008, 69 (12), 4706–4712. doi:10.1016/j.na.2007.11.023
  19. Mizoguchi N., Takahashi W. Fixed point theorems for multivalued mappings on complete metric space. J. Math. Anal. Appl. 1989, 141 (1), 177–188. doi:10.1016/0022-247X(89)90214-X
  20. Nadler S.B. Multivalued contraction mappings. Pacific J. Math. 1969, 30 (2), 475–488. doi:10.2140/pjm.1969.30.475
  21. Reich S. Fixed points of contractive functions. Boll. Unione Mat. Ital. 1972, 4 (5), 26–42.
  22. Samadi A., Ghaemi M.B. An extension of Darbo's theorem and its application. Abstr. Appl. Anal. 2014, 2014, article ID 852324. doi:10.1155/2014/852324
  23. Sekman D., Karakaya V. On the F-contraction properties of multivalued integral type transformations. Methods Funct. Anal. Topology 2019, 25 (3), 282–288.
  24. Vetro C. A fixed-point problem with mixed-type contractive condition. Constr. Math. Anal. 2020, 3 (1), 45–52. doi:10.33205/cma.684638