References
- Akers Sh.B. (Jr), Krishnamurthy B., Harel D. The Star Graph: An
Attractive Alternative to the \(n\)-Cube. In: Proc. of the Intern.
Conf. on Parallel Processing, ICPP’87, University Park, PA, USA, August
1987, Pennsylvania State University Press, Pennsylvania, 1987,
393–400.
- Babai L., Seress A. On the diameter of permutation groups.
European J. Combin. 1992, 13 (4), 231–243.
doi:10.1016/S0195-6698(05)80029-0
- Bajpai J., Dona D., Helfgott H.A. Growth estimates and diameter
bounds for classical Chevalley groups. 2021,
arXiv:2110.02942v1.
- Breuillard E., Green B., Tao T. Approximate subgroups of linear
groups. Geom. Funct. Anal. 2011, 21, article
number 774. doi:10.1007/s00039-011-0122-y
- Even S., Goldreich O. The minimum-length generator sequence
problem is NP-hard. J. Algorithms 1981, 2 (3),
311–313. doi:10.1016/0196-6774(81)90029-8
- Helfgott H.A. Growth and generation in \(SL_2(\mathbb{Z}/p\mathbb{Z})\). Ann.
of Math. (2) 2008, 167 (2), 601–623.
doi:10.4007/annals.2008.167.601
- Helfgott H.A., Seress A. On the diameter of permutation
groups. Ann. Math. (2) 2014, 179 (2), 611–658.
doi:10.4007/annals.2014.179.2.4
- Olshevskyi M. Diameter search algorithms for directed Cayley
graphs. Mohyla Math. J. 2021, 4 (in press).
- Pyber L., Szabó E. Growth in finite simple groups of Lie type of
bounded rank. 2011, arXiv:1005.1858v2.