References

  1. Akers Sh.B. (Jr), Krishnamurthy B., Harel D. The Star Graph: An Attractive Alternative to the \(n\)-Cube. In: Proc. of the Intern. Conf. on Parallel Processing, ICPP’87, University Park, PA, USA, August 1987, Pennsylvania State University Press, Pennsylvania, 1987, 393–400.
  2. Babai L., Seress A. On the diameter of permutation groups. European J. Combin. 1992, 13 (4), 231–243. doi:10.1016/S0195-6698(05)80029-0
  3. Bajpai J., Dona D., Helfgott H.A. Growth estimates and diameter bounds for classical Chevalley groups. 2021, arXiv:2110.02942v1.
  4. Breuillard E., Green B., Tao T. Approximate subgroups of linear groups. Geom. Funct. Anal. 2011, 21, article number 774. doi:10.1007/s00039-011-0122-y
  5. Even S., Goldreich O. The minimum-length generator sequence problem is NP-hard. J. Algorithms 1981, 2 (3), 311–313. doi:10.1016/0196-6774(81)90029-8
  6. Helfgott H.A. Growth and generation in \(SL_2(\mathbb{Z}/p\mathbb{Z})\). Ann. of Math. (2) 2008, 167 (2), 601–623. doi:10.4007/annals.2008.167.601
  7. Helfgott H.A., Seress A. On the diameter of permutation groups. Ann. Math. (2) 2014, 179 (2), 611–658. doi:10.4007/annals.2014.179.2.4
  8. Olshevskyi M. Diameter search algorithms for directed Cayley graphs. Mohyla Math. J. 2021, 4 (in press).
  9. Pyber L., Szabó E. Growth in finite simple groups of Lie type of bounded rank. 2011, arXiv:1005.1858v2.