References

  1. Alber Y.I., Guerre-Delabriere S. Principle of Weak Contractive Mapes in Hilbert Space. In: Gohberg I., Lyubich Y.I. (Eds.) New Results in Operator Theory and Its Applications, Operator Theory: Advances and Applications, 98. Birkhuser, Basel, 1997, 7–22.
  2. Boyd D.W., Wong J.S.W. On nonlinear contractions. Proc. Amer. Math. Soc. 1969, 20 (2), 458–464. doi:10.2307/2035677
  3. Gordji M.E., Rameani M., De La Sen M., Cho Y.J. On orthogonal sets and Banach fixed point theorem. Fixed Point Theory 2017, 18 (2), 569–578. doi:10.24193/fpt-ro.2017.2.45
  4. Gordji M.E., Habibi H. Fixed point theory in generalized orthogonal metric space. J. Linear Topological Algebra 2017, 6 (3), 251–260.
  5. Gordji M.E., Habibi H. Fixed point theory in \(\epsilon\)-connected orthogonal metric space. Sahand Commun. Math. Anal. 2019, 16 (1), 35–46. doi:10.22130/scma.2018.72368.289
  6. Gungor N.B., Turkoglu D. Fixed point theorems on orthogonal metric spaces via altering distance functions. AIP Conf. Proc. 2019, 2183, 040011. doi:10.1063/1.5136131
  7. Hamid B., Gordji M.E., Rameani M. Orthogonal sets: The exiom of choice and proof of a fixed point theorem. J. Fixed Point Theory Appl. 2016, 18 (3), 465–477. doi:10.1007/s11784-016-0297-9
  8. Matkowski J. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Amer. Math. Soc. 1977 62 (2), 344–348. doi:10.2307/2041041
  9. Rhoades B.E. Some theorem on weakly contractive maps. Nonlinear Anal. Theory Methods Appl. 2001, 47 (4), 2683–2693. doi:10.1016/S0362-546X(01)00388-1
  10. Sawangsup K., Sintunavarat W. Fixed point results for orthogonal \(Z\)-contraction mappings in \(O\)-complete metric space. Int. J. Appl. Phys. Math. 2020, 10 (1), 33–40. doi:10.17706/ijapm.2020.10.1.33-40
  11. Sawangsup K., Sintunavarat W., Cho Y.J. Fixed point theorems for orthogonal \(F\)-contraction mappings on \(O\)-complete metric spaces. J. Fixed Point Theore Appl. 2020, 22, 10. doi:10.1007/s11784-019-0737-4
  12. Senapati T., Dey L.K., Damjanović B., Chanda A. New fixed point results in orthogonal metric spaces with an application. Kragujevac J. Math. 2018, 42 (4), 505–516. doi:10.5937/kgjmath1804505s
  13. Yang Q., Bai C.Z. Fixed point theorem for orthogonal contraction of Hardy-Rogers-type mapping on \(O\)-complete metric spaces. AIMS Math. 2020, 5 (6), 5734–5742. doi:10.3934/math.2020368