References
- Adams D.R. A note on Riesz potentials. Duke Math. J. 1975,
42, 765–778. doi:10.1215/S0012-7094-75-04265-9
- Almeida A., Hasanov J., Samko S. Maximal and potential operators
in variable exponent Morrey space. Georgian Math. J. 2008
15 (2), 195–208.
- Bennett C., Sharpley R. Interpolation of Operators. In: Pure and
Applied Mathematics, 129. Academic Press, USA, 1988.
- Burenkov V.I., Guliyev H.V. Necessary and sufficient conditions
for boundedness of the maximal operator in local Morrey-type
spaces. Studia. Math. 2004, 163, 157–176.
doi:10.4064/sm163-2-4
- Burenkov V.I., Guliyev H.V., Guliyev V.S. Necessary and
sufficient conditions for the boundedness of fractional maximal operator
in the local Morrey-type spaces. J. Comput. Appl. Math. 2007,
208 (1), 280–301. doi:10.1016/j.cam.2006.10.085
- Burenkov V.I., Guliyev V.S., Tararykova T.V., Serbetci A.
Necessary and sufficient conditions for the boundedness of genuine
singular integral operators in local Morrey-type spaces. Dokl.
Math. 2008, 78, 651–654.
doi:10.1134/S1064562408050025
- Burenkov V.I., Guliyev V.S. Necessary and sufficient conditions
for the boundedness of the Riesz potential in local Morrey-type
spaces. Potential Anal. 2009, 30 (3), 211–249.
doi:10.1007/s11118-008-9113-5
- Burenkov V., Gogatishvili A., Guliyev V.S., Mustafayev R.
Boundedness of the fractional maximal operator in local Morrey-type
spaces. Complex Var. Elliptic Equ. 2010, 55
(8–10), 739–758. doi:10.1080/17476930903394697
- Burenkov V., Nursultanov E.D. Description of interpolation spaces
for local Morrey-type spaces. Proc. Steklov Inst. Math. 2010,
269, 46–56. doi:10.1134/S0081543810020045
- Cheung K.L.,
Ho K.-P. Boundedness of Hardy-Littlewood maximal operator on block
spaces with variable exponent. Czechoslovak Math. J. 2014,
64 (1), 159–171. doi:10.1007/s10587-014-0091-z
- Diening
L. Maximal function on Musielak-Orlicz spaces and generalized
Lebesgue spaces. Bull. Sci. Math. 2005, 129,
657–700. doi:10.1016/j.bulsci.2003.10.003
- Diening L., Harjulehto P.,
Hästö P., Ružička M. Lebesgue and Sobolev Spaces with Variable
Exponents. In: Morel J.-M., Teissier B. (Eds.) Lecture notes in
mathematics, 2017. Springer, Heidelberg, 2011.
- García-Cuerva J. Weighted \(H^{p}\)
spaces. Instytut Matematyczny Polskiej Akademi Nauk, Warszawa, 1979.
- Grafakos L. Modern Fourier Analysis. In: Axler S., Ribet K. (Eds.)
Graduate Texts in Mathematics, 250. Springer-Verlag, New York, 2009.
- Guliyev V.S. Generalized local Morrey spaces and fractional integral
operators with rough kernel. J. Math. Sci. 2013,
193, 211–227. doi:10.1007/s10958-013-1448-9
- Ho K.-P.
Atomic decompositions of Hardy spaces and characterization of \(BMO\) via Banach function spaces.
Anal. Math. 2012, 38 (3), 173–185.
doi:10.1007/s10476-012-0302-5
- Ho K.-P. Fractional integral operators
with homogeneous kernels on Morrey spaces with variable exponents.
J. Math. Soc. Japan 2017, 69 (3), 1059–1077.
doi:10.2969/jmsj/06931059
- Ho K.-P. Singular integral operators and
sublinear operators on Hardy local Morrey spaces with variable
exponents. Bull. Sci. Math. 2021, 171, 103033.
doi:10.1016/j.bulsci.2021.103033
- Ho K.-P. Boundedness of operators
and inequalities on Morrey-Banach spaces. Publ. Res. Inst. Math.
Sci. 2022, 58 (3), 551–577. doi:10.4171/PRIMS/58-3-4
- Ho K.-P. Calderón-Zygmund operators, Bochner-Riesz means and parametric
Marcinkiewicz integrals on Hardy-Morrey spaces with variable
exponents. Kyoto J. Math. 2023, 63 (2), 335–351.
doi:10.1215/21562261-10428475
- Ho K.-P. Fractional geometrical
maximal functions on Morrey spaces with variable exponents. Results
Math. 2022, 77, article number 32.
doi:10.1007/s00025-021-01570-8
- Krantz S. Fractional integration on
Hardy spaces. Studia Math. 1982, 73 (2), 87–94.
- Kokilashvili V., Meskhi A. Boundedness of maximal and singular
operators in Morrey spaces with variable exponent. Armen. J. Math.
2008, 1 (1), 18–28.
- Macias R., Segovia C. Weighted
norm inequalities for parabolic fractional integrals. Studia Math.
1977, 61, 279–291. doi:10.4064/SM-61-3-279-291
- Morrey C. On the solutions of quasi-linear elliptic partial differential
equations. Trans. Amer. Math. Soc. 1938, 43,
126–166. doi:10.1090/S0002-9947-1938-1501936-8
- Muckenhoupt B., Wheeden R. Weighted norm inequalities for singular and fractional
integrals. Trans. Amer. Maths. Soc. 1971, 161,
249–258. doi:10.1090/S0002-9947-1971-0285938-7
- Muckenhoupt B., Wheeden R. Weighted norm inequalities for fractional integrals. Trans.
Amer. Math. Soc. 1974, 192, 261–274.
doi:10.1090/S0002-9947-1974-0340523-6
- Peetre J. On the theory of
\({\cal L}_{p,\lambda}\) spaces.
J. Funct. Anal. 1969, 4 (1), 71–87.
doi:10.1016/0022-1236(69)90022-6
- Ragusa M.A. Commutators of
fractional integral operators on vanishing-Morrey spaces. J. Global
Optim. 2008, 40, 361–368. doi:10.1007/s10898-007-9176-7
- Ragusa M.A. Embeddings for Morrey-Lorentz spaces. J. Optim.
Theory Appl. 2012, 154 (2), 491–499. doi:10.1007/s10957-012-0012-y
- Rubio de Francia J.L. Factorization and
extrapolation of weights. Bull. Amer. Math. Soc. (N.S.) 1982,
7 (2),393–395.
- Rubio de Francia J.L. A new technique
in the theory of \(A_{p}\)
weights. In Topics in modern harmonic analysis, Vol. I, II.
Turin/Milan, 1982, 571–579. Ist. Naz. Alta Mat. Francesco Severi, Rome,
1983.
- Rubio de Francia J.L. Factorization theory and \(A_{p}\) weights. Amer. J. Math. 1984,
106 (3), 533–547. doi:10.2307/2374284
- Sawano Y.,
Sugano T., Tanaka H. Orlicz-Morrey spaces and fractional
operators. Potential Anal. 2012, 36, 517–556.
doi:10.1007/s11118-011-9239-8
- Sawano Y., Ho K.-P., Yang D., Yang S.
Hardy spaces for ball quasi-Banach function spaces.
Dissertationes Math. 2017, 525, 1–102.
doi:10.4064/dm750-9-2016
- Stein E., Weiss G. On the theory of
harmonic functions of several variables: I. The theory of \(H^{p}\)-spaces. Acta Math. 1960,
103 (1–2), 25–62. doi:10.1007/BF02546524
- Stein E.M.
Harmonic analysis: real-variable methods, orthogonality, and oscillatory
integrals. In: Princeton Mathematical Series, 43. Princeton Univ. Press,
Princeton, NJ, 1993.
- Strömberg J.-O., Torchinsky A. Weighted Hardy
Spaces. In: Dold A., Eckmann B. (Eds.) Lecture Notes in Mathematics,
1381. Springer, New York, 1989.
- Yee T.-L., Ho K.-P., Cheung K.L., Suen
C.K. Local sharp maximal functions, geometrical maximal functions
and rough maximal functions on local Morrey spaces with variable
exponents. Math. Inequal. Appl. 2020, 23 (4),
1509–1528. doi:10.7153/mia-2020-23-108
- Yee T.-L., Ho K.-P.
Fractional integral operators with homogeneous kernels on
generalized Lorentz-Morrey spaces. J. Math. Inequal. 2021,
15 (1), 17–30. doi:10.7153/jmi-2021-15-03