References

  1. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. North-Holland, Math Studies 204, 2006.
  2. Kochubei A. N. The Cauchy problem for evolution equations of fractional order. Differ. Uravn. 1989, 25 (8), 1359–1368. (in Russian)
  3. Eidelman S.D., Ivasyshen S.D., Kochubei A.N. Analytic methods in the theory of differential and pseudo-differential equations of parabolic type. In: Operator Theory: Advances and Applications, 152. Birkhauser Verlag, Basel-Boston-Berlin, 2004.
  4. Luchko Yu. Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 2009, 12 (4), 409–422.
  5. Meerschaert M.M., Erkan N., Vallaisamy P. Fractional Cauchy problems on bounded domains. Ann. Probab. 2009, 37 (3), 979–1007. doi:10.1214/08-AOP426
  6. Matijchuk M.I. The connection between fundamental solutions of parabolic equations and fractional equations. Bukovinian Math. J. 2016, 4 (3–4), 101–114. (in Ukrainian)
  7. Sakamoto K., Yamamoto M. Initial value/boundary-value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 2011, 382 (1), 426–447. doi:10.1016/j.jmaa.2011.04.058
  8. Voroshylov A.A., Kilbas A.A. Conditions of the existence of classical solution of the Cauchy problem for diffusion-wave equation with Caputo partial derivative. Dokl. Akad. Nauk 2007, 414 (4), 1–4.
  9. Aleroev T.S., Kirane M., Malik S.A. Determination of a source term for a time fractional diffusion equation with an integral type over-determination condition. Electron. J. Differential Equations 2013, 2013 (270), 1–16.
  10. Kirane M., Malik S.A., Al-Gwaiz M.A. An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions. Math. Methods Appl. Sci. 2013, 36 (9), 1056–1069. doi:10.1002/mma.2661
  11. Ismailov M.I., Çiçek M. Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl. Math. Model. 2016, 40 (7–8), 4891–4899. doi:10.1016/j.apm.2015.12.020
  12. El-Borai M.M. On the solvability of an inverse fractional abstract Cauchy problem. Intern. J. Research Rev. Appl. Sci. 2010, 4, 411–415.
  13. Jin B., Rundell W. A turorial on inverse problems for anomalous diffusion processes. Inverse Problems 2015, 31 (3), 1–40. doi:10.1088/0266-5611/31/3/035003
  14. Lopushans’ka H., Rapita V. Inverse coefficient problem for semi-linear fractional telegraph equation. Electron. J. Differential Equations 2015, 2015 (153), 1–13.
  15. Lopushans’kyi A., Lopushans’ka H., Rapita V. Inverse problem in the space of generalized functions. Ukrainian Math. J. 2016, 68 (2), 269–282. doi:10.1007/s11253-016-1223-4
  16. Lopushansky A., Lopushanska H. Inverse problem for \(2b\)-order differential equation with a time-fractional derivative. Carpathian Math. Publ. 2019, 11 (1), 107–118. doi:10.15330/cmp.11.1.107-118
  17. Janno J., Kasemets K. Unequeness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Probl. Imaging 2017, 11 (1), 125–149. doi:10.3934/ipi.2017007
  18. Lopushanska H., Lopushansky A. Inverse problem with a time integral condition for a fractional diffusion equation. Math. Methods Appl. Sci. 2019, 42 (6), 3327–3340. doi:10.1002/mma.5587.
  19. Janno J., Kinash N. Reconstruction of an order of derivative and a source term in a fractional diffusion equation from final measurements. Inverse Problems 2018, 34 (2). doi:10.1088/1361-6420/aaa0f0
  20. Gelfand I.M., Shilov G.E. Generalized Functions. Vol. 2: Spaces of Fundamental and Generalized Functions. AMS Chelsea Publ., 2016.
  21. Vladimirov V.S. Equations of Mathematical Physics. Nauka, Moscow, 1981. (in Russian)