References
- Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications
of fractional differential equations. North-Holland, Math Studies 204,
2006.
- Kochubei A. N. The Cauchy problem for evolution equations of
fractional order. Differ. Uravn. 1989, 25 (8),
1359–1368. (in Russian)
- Eidelman S.D., Ivasyshen S.D., Kochubei A.N. Analytic methods in the
theory of differential and pseudo-differential equations of parabolic
type. In: Operator Theory: Advances and Applications,
152. Birkhauser Verlag, Basel-Boston-Berlin, 2004.
- Luchko Yu. Boundary value problems for the generalized
time-fractional diffusion equation of distributed order. Fract.
Calc. Appl. Anal. 2009, 12 (4), 409–422.
- Meerschaert M.M., Erkan N., Vallaisamy P. Fractional Cauchy
problems on bounded domains. Ann. Probab. 2009, 37
(3), 979–1007. doi:10.1214/08-AOP426
- Matijchuk M.I. The connection between fundamental solutions of
parabolic equations and fractional equations. Bukovinian Math. J.
2016, 4 (3–4), 101–114. (in Ukrainian)
- Sakamoto K., Yamamoto M. Initial value/boundary-value problems
for fractional diffusion-wave equations and applications to some inverse
problems. J. Math. Anal. Appl. 2011, 382 (1),
426–447. doi:10.1016/j.jmaa.2011.04.058
- Voroshylov A.A., Kilbas A.A. Conditions of the existence of
classical solution of the Cauchy problem for diffusion-wave equation
with Caputo partial derivative. Dokl. Akad. Nauk 2007,
414 (4), 1–4.
- Aleroev T.S., Kirane M., Malik S.A. Determination of a source
term for a time fractional diffusion equation with an integral type
over-determination condition. Electron. J. Differential Equations
2013, 2013 (270), 1–16.
- Kirane M., Malik S.A., Al-Gwaiz M.A. An inverse source problem
for a two dimensional time fractional diffusion equation with nonlocal
boundary conditions. Math. Methods Appl. Sci. 2013,
36 (9), 1056–1069. doi:10.1002/mma.2661
- Ismailov M.I., Çiçek M. Inverse source problem for a
time-fractional diffusion equation with nonlocal boundary
conditions. Appl. Math. Model. 2016, 40 (7–8),
4891–4899. doi:10.1016/j.apm.2015.12.020
- El-Borai M.M. On the solvability of an inverse fractional
abstract Cauchy problem. Intern. J. Research Rev. Appl. Sci. 2010,
4, 411–415.
- Jin B., Rundell W. A turorial on inverse problems for anomalous
diffusion processes. Inverse Problems 2015, 31
(3), 1–40. doi:10.1088/0266-5611/31/3/035003
- Lopushans’ka H., Rapita V. Inverse coefficient problem for
semi-linear fractional telegraph equation. Electron. J.
Differential Equations 2015, 2015 (153), 1–13.
- Lopushans’kyi A., Lopushans’ka H., Rapita V. Inverse problem in
the space of generalized functions. Ukrainian Math. J. 2016,
68 (2), 269–282. doi:10.1007/s11253-016-1223-4
- Lopushansky A., Lopushanska H. Inverse problem for \(2b\)-order differential equation with a
time-fractional derivative. Carpathian Math. Publ. 2019,
11 (1), 107–118. doi:10.15330/cmp.11.1.107-118
- Janno J., Kasemets K. Unequeness for an inverse problem for a
semilinear time-fractional diffusion equation. Inverse Probl.
Imaging 2017, 11 (1), 125–149.
doi:10.3934/ipi.2017007
- Lopushanska H., Lopushansky A. Inverse problem with a time
integral condition for a fractional diffusion equation. Math.
Methods Appl. Sci. 2019, 42 (6), 3327–3340.
doi:10.1002/mma.5587.
- Janno J., Kinash N. Reconstruction of an order of derivative and
a source term in a fractional diffusion equation from final
measurements. Inverse Problems 2018, 34 (2).
doi:10.1088/1361-6420/aaa0f0
- Gelfand I.M., Shilov G.E. Generalized Functions. Vol. 2: Spaces of
Fundamental and Generalized Functions. AMS Chelsea Publ., 2016.
- Vladimirov V.S. Equations of Mathematical Physics. Nauka, Moscow,
1981. (in Russian)