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The use of the isometry of function spaces with different
numbers of variables in the theory of approximation of
functions

Bushev D.M.!, Abdullayev F.G.>>*, Kal’chuk L.V.!, Imashkyzy M.3

In the work, we found integral representations for function spaces that are isometric to spaces of
entire functions of exponential type, which are necessary for giving examples of equality of approx-
imation characteristics in function spaces isometric to spaces of non-periodic functions. Sufficient
conditions are obtained for the nonnegativity of the delta-like kernels used to construct isometric
function spaces with various numbers of variables.
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teristic.
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Introduction

In the paper [4], there were constructed the spaces of real n + k variable functions that are
isomeric to functions of real variables, defined on the n-dimensional Euclidean space. In view
of the fact, that isometry of functional spaces with different numbers of variables is a rare
phenomenon that was previously known only for the spaces of complex-valued functions (see
[4, p. 1027]), it is expedient to consider its application.

In [5], there were found the subspaces of solutions of Laplace and thermal conductivity
equations that are isometric to the spaces of real functions of one variable. In the paper [1],
the authors got the subspaces of solutions of systems of Laplace and thermal conductivity
equations that are isometric to spaces of real functions.

To construct subspaces of solutions of differential equations and their systems that are iso-
metric to the spaces of real functions, it was necessary to establish the conditions for conver-
gence of a convolution of the function with its delta-like kernel. This was made in the paper [6].

In [7, 8], the main approximative characteristics were defined, and the examples of their
equality for isometric mappings of the spaces of real n + m variable functions, on spaces of
real 27t-periodic in each of n variables functions. Also, there are some examples of application
of isometry in the theory of approximation of functions.
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In this paper, we extend the results of [7, 8] to isometric mappings in the spaces of non-
periodic functions, find integral representations for function spaces that are isometric to spaces
of entire functions of exponential type, and establish sufficient conditions for operators to map
convolutions of spaces of function given on n-dimensional Euclidean space, on the spaces of
entire functions of exponential type.

Let us denote with C, Leo, Ip the spaces of real functions, defined on the interval [—7t, 77),
that are 27t-periodic in each variable x and, respectively, essentially bounded and measurable
functions with the norms

fle= swp If@], Ifler =supvrailfl, Il =( [ flrax) ",

x€[—7,7m) x€[—7,1)

where1 < p < co.

The inequality ¥ = (y1,...,Yn) > 0= (0,...,0) means that the coordinates of vector ¥ are
non-negative, and i > 0 means that at least one of them is positive,

H?_l’_,m = {(x’y) = (7137) = (X1,. . '/xi’l/yll- . -,]/m) € En+m : (? > 6)};

M, = {(x,y) € E"™: ( 20)}

are the subspaces of real (1 -+ m)-dimensional Euclidean space E"*™, X is one of the spaces C,
Leo, Ly, XMy, and XM, are the spaces of real functions f(x,y) = f(x,7) = f(x,¥1,---,Ym),
defined, respectively, on the sets Hfm and ﬁfim with the norms

1 fllar, =sup If(x¥)llx  fllxzz, =sup [f(x7)%-
7>0 7>0

Let further Qs = [, 4], Izym (x) = IZ(x, Yi, - Ym) € L[1M,, = LM,, be delta-like kernels,
defined and non-negative on the set Hfm and such that forally > 0 and 0 < 6 < 7t it holds

Ko (x)dx = 1, lim Kom (x)|dx = 0.
/[nm (%) 7040 [wm)\gs’ (%)

Note that approximative properties of 27t-periodic analogs of these kernels were considered in
the papers [9,10].
Denote by

(R xRy} = {lx,) = Tx.7) = FrRp)(0) = [ Fls=0gnt: (Fe D),
{X*Kym(x)} = {5(x,y) =0(x,y) = {g*K?’”)(x)' g> g’ c (feX }

the spaces of convolutions with delta-like kernels Izym (x), where X is one of the spaces C, L,
and L,.
p
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From the criteria of best approximation for the element f € X by elements of the subspace
of all trigonometric polynomials F,,,_1 of degree at most n — 1 (see, e.g. [11, pp. 46-53]) follow
the criteria of best approximation of isometric image f * K—m by the elements of isometric space
{Fop_1 % Kym}.

An element YT ;(x,y) € {Fap_1* Kym} is the element of best approximation of the el-
ement 0(x,y) = f* Kyn(x) in the space XM, if and only if the trigonometric polynomial

T, , is the polynomlal of best approximation of function f € X in the space X. Hence,
En(@)e, = lo(xy) — 9T, 1(x,y)lle;, if and only if there exist 2n points x; such that
0<x1 <xy<---<xy, <2m, and that the difference

Ax,0) = 0(x,0) = 9T, _1(x,0) = f(x) = T4 (x)

attains the maximum value (by its absolute value) [[A(x,0)|z = [|o(x,y) — ¢T,_; (x, )&, -
changing the sign one by one, i.e.,

A(x1,0) = =A(x2,0) = A(x3,0) = - -+ = =A(x20,0) = £[A(x, 0) [,

and for 1 < p < oo the equality E,(0) 37, = 10(x,y) = ¢T;_1(x,¥) |53, holds if and only if
for each element ¢T | (x,0) € {Fp,_1 * Izym} the relation

T 1 (%, 0)[B(x,0) — T (x,0) P sgn((x,0) — $T;_,(x,0)) dx = 0

is true, where ¢T,,_1(x,0) = T,,—1(x) and ¢T;_,(x,0) = T;_;(x).

To approximate functions and classes of non-periodic functions, the entire functions of
exponential type are used instead of trigonometric polynomials. To give examples of equality
of approximation characteristics in the spaces of functions, isometric spaces of non-periodic
functions, which are given by convolutions with entire functions of exponential type, it is
necessary to establish integral representations for these convolutions.

1 The spaces of convolutions with entire functions of exponential type and
their integral representations

Denote by C", L7, L%, Z% the spaces of real functions, given on E", and, respectively, con-
tinuous and bounded, essentially bounded and measurable, with the norms

[fllcr = sup [f(x)], |flloon = supvrai|f(x)], (1)
xeEn x€En
Il =0 LA 2 e s - -« v
o e p2/p1 P/ Pn-1 1/ pn (2)
= {l [ {l \f(xl,xz,...,xn)\pldxl} } dxn} ,
A llsr = 11 Cers )y o < Ml

= sup [/u:an {...sup [/al—i-Zn |f(x1,...,xn)|l7lclac1]m/pl . .}pn/pnldxn}l/pn. )

a,€E a€E
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Let X" be one of the spaces C", L, Ly, f% (1 <P <) of (1)-(3),
an = {Tﬁn(z) = Tﬁn(xl —+ itl, e, Xy + an) : TEH(JC) € Xn}
are the spaces of entire functions of exponential type not greater than o' = (04,...,0%)

(efe.tn.g. ") (see [2, pp. 118-119]) that belong to the space X" on the real n-dimensional

n n L —=n Ln =i n n n
Euclidean space E", F.” = F' ,E” = F/ ,E7 = FP, Fi~ = F=", X" 5 EX"(E") = {Tz(x) :
Ton(z) € an} are their restrictions on the space E", Igm (x) are delta-like kernels (9), (10)

from [4], defined on H,J{, s

(B s 1} = {(Tr % 1) (2) = / ()T (z =Dt : (T € EX)AG>0)}, @)

n

(T # I8)(2), 7>
Ton(z), y

are the spaces of convolutions of e.f.e.t.n.g. " with delta-like kernels,

(=] e]

(B «11} = {IT(—,n(z,y) = { " (Tpn € Pg(”)}

(FX"(B7) I} = (T I3)(x) : (Ton(x) € EX(EM) A (7> D)), 5
m _ . (x _ (Tgn *Iﬂm)(x), Y > 6, (% X" (o
(EE) i) {m (o {Tw(x),y RGN G >>} ©

are their restrictions on E". If n = 1, then we omit index n and dashes over the vectors 7, p, 1,
. In [7,8] it was proved, that for each fixed 7 > 0, the convolution of trigonometric polynomial
with delta-like kernel is a trigonometric polynomial. An analogical statement holds true also
for convolutions of entire functions with delta-like kernels.

Theorem 1. Arbitrary function from the space of convolutions (4) for each fixed j > 0 belongs
to the space FX" .

Proof. Let f € L", and Tz» € Fg”. Let us show that the function

(f % Ton)(z) = g F(H)Ten(z —t)dt € EX". 7)

Inthecase 1= (1,...,1) <p=(p,...,») <G=(q1,...,9n) < = (00,...,00), we have
(see [13, pp. 153-155]) - )

an g an g Fgon _ Fﬁcn. (8)

We want to prove that for 1 < p < 0 the equality
Fg =rc )

is true.
For each function T;» € FEC”, in view of the norm definition of the spaces f% and C", we
have

n
[Tl < [T T icn. (10)
i=1
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Now we show that

n 1
I Tollen < TT@)Y%(0; "7 + 1) | Ton 1, (11)
i=1

where Ty isefetng. o = (01,...,04),7 = (p1,...,pn) and 1/p; + 1/g; = 1(i = 1,n).
To simplify the notations, we assume that n = 2. It is known, see [12, pp. 191-192], that for
each function T, € F} the following inequality holds

ITellc < @)Y Te|l5(c"P +1), (12)

where 1/p 4+ 1/g = 1. Taking into account that for each fixed z;, the function T (z1,2) is
(e.f.e.t.n.g. 02) in the variable z,, then, using (12), we get

1
sup | T2 (x1,%2)| < (270)% (03P + 1) || T2 (31, 2) || 5y 0 (13)

x€E
where 1/p> +1/q2 = 1. Then, by virtue of the inequality (13) and norm definition of the space
f%, we get

1/
IT,2(x1,%2) |2 = sup sup |T,2(x1,%2)| < (270)"/%2 (07 + 1) || sup | T, (x1, 22) |5, 2,
x1€EE x,€E x1€E

2
1/p;
< TTCmY4 (e " + DN Ty (e, x2) 151,21 20

~.
I
[

@2m) V(P 4 1)|T, 2(x1,%2) |2,

':lw

N
Il
=

where 1/p; +1/q; = 1 (i = 1,2). Hence, the inequality (11) is true. From (10) and (11), we
obtain (9). Theorem 3.6.2 in [2, p. 162] yields, that if T;» € an, and f € L", then

(f * T(7n> € an (14)

In the case f € L", and Tz» € an, we have, in view of the relations (8) and (9), that the
function Tyn € FE', and from (14) get that (f * Ty») is e.f.e.tn.g. 7. Using the generalized
Minkovskyi inequality (see [4, p. 18]) and the norm invariance of the space X" with respect to
the shift, we get

If * Torllxo = | [, O Ton(x =Dt | < I Ton(xe = Dol fller = I Tl e

i.e. the function (f * Ton)(x) € X".
Therefore, the relation (7) is true, and Theorem 1 is proved. O
Let us prove that
FY (E") = F="(E") = FE"(E") c C7, (15)
where C" D () isa subspace of uniformly continuous functions from the space C". In view of

the fact that the equality F~ P F>" = F&" was established in proving Theorem 1, it is sufficient
to show that FS" (E") C C” To simplify the notations, we assume that n = 2. Let T2 (x, y) be

an arbitrary function from the space ng(Ez). The function T (x,y) is differentiable in each
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variable. Therefore, for each point My (x1,y1) i Ma(x2,y2) of the space E?, using the Lagrange
theorem, we have

| To (x1, 1) = Ta (%2, 2) | < [T (1, 41) = T (%2, y1)| + [Tz (32, 91) — T (%2, y2)|

16
— (TG )l 2 — 2] + (e (e 1)l — ), (10)

where ¢ € (x1,x2) and 7 € (y1,Y2).
For each fixed zj, the function T2(z1,22) is e.f.e.t.n.g. ¢y in variable z;, and for each fixed
z1 itis e.f.e.t.n.g. 0y. Then, in view of the Bernstein inequality (see, e.g., [2, p. 138]), we get

(T y)ille < allTe(x e, (Texy)yle < ellTa(xy) e (17)
The inequalities (16) and (17), in combination with the inequalities between means, yield

T 2(x1,y1) — T2(x2,¥2)| < || T2l c2(o1]x2 — x1] + 02]y2 — y1])
< V2max{oy, 02} || Tz 2/ (1 — 222 + (41 — y2)2

(18)

From (18) we get, that the function T, (x, y) is uniformly continuous on E?. It means that the
relations (15) are true.

Therefore, if X" is one of the spaces C", L[, L%, Z% (T <P < ®) then Corollary 1 from [4] in
combination with (8) and (15) yields that the spaces {FX" (E") * I;m} and {FX"(E") x Igm} are
isomorphic to the space { X" (E")} and isomertic to this space in the case when the kernel I;m
is non-negative.

Let us find an integral representation of functions from the spaces (5) and (6). Denote with
AL = [—0y,01] X ... X [—0y,04] C E" n-dimensional parallelepiped of the space E”, Ly AL) the
space of measuable real or complex functions, the pth modulus of which is summable, with
the norm

1/p
171,y = 1) = ( [ f(x)|pdx) |

A

Theorem 2. The following relations hold:

{F2'(E") % I} = {(Tgn ) = [ (I (~D@ (D™t s (p € Lyy) A (7> 6>}, (19)

T—n * Il”lm ’ Yy > 6,
N N (TSI
(FFE) « 10} = { [To(x,y) !

o(t)e'*dt,

where
E(I) (x) = /E I (Hedt

is the fourier transform of the function Igm.

Proof. By the Wiener-Paley theorem (see [12, pp. 130-131]),

an = {TEH(Z) = /EQD(f)eitxde (QD S LZ(A%))} (21)

a
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and the definitions (5), (6). Since the function Tz € Ly ALY, then, by (55) from [4] and the
change of variables, we have for almost all ¢ € E"

F(Tp)(t) = (20)"F H(Tpr) (1) = (27)"p(~t). (22)

In view of the fact that for all 7 > 0 the kernel I;m € L", we get that the function F (Igm) is
uniformly continuous and bounded on E". Since the function ¢(t) € Ly Az), then

[E(Lgn) (=)@ (8)] € L.

Hence, by Lemma 7 from [4], using (21), (22) and changing the variables, for all x € E" the
following equality holds

(Tor s 1) () = [ F(I)(=t)p(t)e™at 23)

The equality (23) yields (19). d

Corollary 1. The following relations hold:

{EZ(E") « I} = {(Tﬁn*lgm)(x) - /A F(I) (1) (a(t) + ib(t))e™ dt -

a (24)
(a(t) € Loaz) A (b(E) € Lyan) A (7> D)},
{EZ(E") I}
ITon (x, y) (o s 1) (), v>0 (a(8) € Lyyn) A (6(8) € Lype)) b, &
= o\ Y) = 4 ; dtigr —p - @ (AL) (am)) (7
/et +i(eneta, =3, i 0

o

where a(t) is even b(t) is od in each variable t1, .. ., t, are real functions.

Proof. Since the functions from the space (20) are real on IT;} ,, then the function

ITon(x,0) = Ton(x) = [ g(t)e™ e

is real on E". Therefore, it coincides with the conjugate function, i.e.,

Tgﬂ:/
A

where a(t) and b(t) are real functions from the space Lyan). In the last equality we used
the change of variables. The relations (26), taking into account the formulas of rotation (see

P(t)e dt = /

X (a(t)—ib(t))e*”xdt:/ (a(—t) —ib(—t))e™™dt,  (26)

n n n
T T A?

[4, p. 55]) and changing the variables, we get
a(t) =a(—t), b(t)=—b(—t). (27)

The equalities (27) yield, that the function a(t) is even, and b(t) is odd in each variable ty, .. ., t,.
Then, from the relations (19), (20) we obtain (24), (25), and Corollary 1 is proved. O
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From Theorem 1, Corollary 1 and the relation (8) we get, that for

1(1,...,1) <7 <2(2,...,2)

and the spaces of convolutions {an (E™) % I;m} and {an (E™) % Igm} the following integral rep-
resentations hold true: (19), (20), (24), (25).
The functions from the space F¢ satisfy the equalities (see, e.g., [2, p. 182])

Fy = {80(2) = 80(0) +2Ts(2) : Tr € F7}. (28)

Let us find the integral representations for the functions from the space {FS * Iyn} under the
additional conditions on the kernel. The following statement holds.

Theorem 3. Let
1 [ - 1 [
ILm(x) = P’l(gbym(\u\))(x) = E/_Oogbym(\u\)e’l”xdu = E/o ym (1) cos ux du

is a delta-like kernel, defined on Hf s and function Yy ([t]) = ¢(|t],y) is locally absolutely
continuous in the variable t for each fixedyy > 0. Then for ally > 0 the relation

] oo / =\ ,—itx 1 oo ! =\ o
fyn () = xhgn(x) = o= [ sgn(ty(lel ple Pt = — [ sgn(t)yi(|t], 7)sintxdt  (29)

holds. If for each j > 0 the function fym(x) belongs to the space L, or the function
sgn(t)y,(|t], ) belongs to the space L,, and the function g, is in FS, then we have the rela-
tions:

{F5 (E) # Iyn} = {(ga * I ) (x) = go(0) + x ﬁ (; g ([u]) (1) ™ du

- , (30)

- i/_Usgn(u)tlﬂi,(|u|,?)90(u)em"du (@ €Ly o) NT > 5)},

T _ [ (gox I (x), >0, 2}
FS(E) s Im} =< go(x,y) = Y (T, € F2) 5. 31
{ F5 (E) * Iyn} {g( y) {ggngg(o)ﬂmx), 7=0 (Tr € F7) (31)

Proof. The function ¢y (|u]) is locally absolutely continuous. Then (see, e.g., [14, p. 229]) for
all ¥ > 0 and almost all real u it holds

Yu(|ul,y) = sgn(u) gy, (Jul, 7). (32)

In view of (32) (see [4, p. 71]) and integrating by parts, that is possible due to the absolute
integrability of the function iy (|t|) in variable ¢, we get

[ee]

() = 5 | sgn(t)yi(lH], g)e d, (33)

—00

The relation (33) yields (29). If h(x) = xT(x), then from (28) we have that g,(x) = g+(0) +
h(x) and, taking into account (29) and (9) from [4], making the change of variables, we get

oo oo

(80 % Iyn) () :/ go () Iy (x — £) dt = g, (0) +x/ Ty () I (x — £) dt o
Y - 34

— /oo (x = t)m(x — 1) To(t) dt = go(0) + x(To * Lym) (x) — (fym * To) (x),

—00
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where, in view of the relations (21), (28), T,(x) € F2. Since the function

Ipn(x) = F~ (g (Ju]) (x) € L,

then by (70) from [4], for all ¥ > 0 and real ¢ the relation F(F *1(1/1?11) (t) = ¢y (t) holds. By
Theorem 2, in the case n = 1, we obtain

(T s Ip)(x) = [ ‘; Pyn((t]) p(Dedt. (35)

If for each ¥ > 0 the function fym(x) belongs to the space L, then by Lemma 7 from [4],
using the equalities (21), (29), we get

(T () =1 [ sgnlupg(ul,7)gw)e™ du (36)

If for each j > 0 the function sgn(u)y),(|u|,y) € Ly, then the relations (57) from [4], taking into
account that ¢ € L, yield the relation (36). From (19), (20), (34)—-(36) we get (30), (31). 0

Since the functions from the spaces of convolutions (30), (31) should be real on the set
Hfm, then, speculating in a similar way as in proving Corollary 1, we derive to the following
statement.

Corollary 2. The following relations hold
(FE(E)  In} = {(gg ) (x) = go(0) + 2x /0 " (£) (a(t) cos tx — b(t) sin tx)dt
+2 /OU Wi(t,7)(a(t) sintx + b(t) cos tx)dt (37)
(1) € L)) A (1) € Lo o) A 7> D),

{FS(E) * Ign} = {ga(x,y)

(8o * Iy (x), 7 >0,
y

= ag

B {gg(X) = g0(0) + Zx/O (a(t) cos tx — b(t) sin tx) dt,
(a(t) € La(—g0) A (B(1) € Lo(_0)) },

where the kernel Iy (x) satisfies the conditions of Theorem 3, and a(t) is an even, b(t) is an
odd function.

Theorems 2, 3, Corollaries 1, 2 and the relations (8), (9) yield, that for 1 < p < 2 for the
spaces of convolutions {F} (E) * Iym} and {F/(E) * Iym} the respective integral representations
hold (19), (20), (24), and (25). If the kernel Iy ) (x) satisfies the conditions of Theorem 3, then for
2 < p < oo for these spaces of convolutions and for 1 < p < oo for the spaces of convolutions
{FP(E) * Lym} and {FF(E) * Ly} we have, correspondingly, the integral representations (30),
(31), (37), and (38).

To give examples of delta-like kernels, that satisfy or not the conditions of Theorem 3, let us
obtain the sufficient conditions for function ¥y»(x) = F -1 (yn (lu]))(x) to be a non-negative

delta-like kernel, i.e., to satisfy the conditions of Corollary 6 from [4]. The following statement
holds.
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Lemma 1. If for eachy > 0 the function ymn(|u|) is convex downward on the interval (0,0),
Yyr(0) =1, lim gpgn(ful) =0 (39)
1] =00
and for all real u the equality

lim_gppn(fu]) = lim_¢(jul,y) =1 (40)
y—0+0 y—0+0
is true, then the function Yy (x) = F -1 (ym(Jul))(x) is a non-negative delta-like kernel.

Proof. In view of the fact, that for all > 0 the function Pyn(|u]) is convex downward on
the interval (0,00), from (39) we get that this function is bounded on H1+,m- Then (see, e.g.,
[2, pp. 167-168]) for all 7 > 0 the function ¥y (x) is non-negative, absolute integrable on the
whole real axis and continuous possibly except of the point x = 0. Then, in view of the
equalities (39), (40) the functions ¥y (x) and yn(|u|) satisty the conditions of Corollary 6
from [4]. Hence, by Corollary 6, the function ¥y (x) is a non-negative delta-like kernel. O

Corollary 3. If the function i (|u|) is non-decreasing, convex upwards on the interval (0, o),

$(0) =0, lim p(|u|) = oo, D)
|u| =00
and the function ¢(¥) is positive on the set Hatm —{y€E":7>0},
7—0+0
then the function
‘F(P@(x) = F—l(e—sv(y)tlﬂ(\u\))(x) — % /700 o~ P P(|u]) p—inx g,

is a non-negative delta-like kernel.
Proof. From the definition of upward convexity, for all u; > 0 and u; > 0 it holds
A+ oY) +p(ua)
> .
NCEDR T =
Using the inequality (43), the arithmetic and geometric means theorem, and taking into ac-

count that the function ¢ (V) is positive, we get
e~ 9@ P((n+12)/2) < p=0@) (1) +4(u2))/2

44
= (e7?@¥(1)p=e@P(12))1/2 < %(e—sv(?)w(ul) + e~ P@)¥m)y, (44

From (44), by the definition of downward convexity, we have that for all 7 > 0 the function
e~ 9@¥(ul) js downward convex on the interval (0, o). From (41) we get that forally > 0
e 9@Y0) — 1 lim e ¢@¥(uD) =, (45)

|1t| =00
and from (42) that for all real u it holds

lim e~ ?@¢(ul) — 1. (46)
7—0+0
Therefore, in view of the equalities (45) and (46), the function e~ ?@¢(ul) satisfies the con-

ditions of Lemma 1. Hence, by Lemma 1, the function ¥, ;) (x) is a non-negative delta-like
kernel. O
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Let us give examples of functions that satisfy the conditions of Corollary 3 and Theorem 3.

Example. Let the function ¢(¥) satisfies the conditions of Corollary 3, a(u) = |u|*, Ppg(u) =

Inf(1+ |ul), ¥, (u) = In"In(e + |u|) and 0 < &, B,y < 1, then we can check that the functions
Pa(u), Yp(u), Po(u) satisfy the conditions of Corollary 3. Then, the functions

¥ () = % l eIy % /0 e~ 9D cos 1ux du,
_1 o) InP(1+ — _1 ® @ Inf(1+
‘F(P(y),ﬁ(x) — E \/_ooe (P(y) n ( |u|)e ZMXdu — ;\/0 e ¢(y) n ( u) Cosuxdu,

_ 1 @ In(et|u]) i _ 1 @I Iner
¥y)(x) = 5= /_ e 9(@) I In(e+|u]) ,—iux g, = /0 o= @I In(e+1) (g 1x du
are non-negative delta-like kernels.

If 9(y) = y°B = 1, then the kernel

1 [ ‘ 1 [ cosux
b _ = —yIn(l+[uf) ,—iux 7, _/ Bt |
v(x) 2n[me ¢ M=l arap ™
(see, e.g., [14, p. 397]) coincides with the Flett kernel and is a non-negative delta-like kernel.
It is known (see, e.g., [3, pp. 115-116]) that if 1 < a < 2 then the functions

1 [ ©
Ta(x) — E/_ooe_hl' e_lMJCdu
are non-negative and absolute integrable on the whole real axis. Making the change of vari-
ables, for ally > 0 we have

1

_/700 e VIt ity gy — Py (x).

—1/a 1/ay
y " alxy ) 7

Hence, for 0 < « <2 andy > 0 the function ¥} (x) is non-negative and absolute integrable on
the whole real axis, but for 1 < « < 2 the function ¢,(u) = |u|* is convex downward but not
upward.

Let us show, thatif0 < a, B, < 1/2and1 = B = v < a < 2 the non-negative delta-like
kernels ¥} (x),

1 [ b i 1 7% b
¥ _ yInP (14 |ul) ux g, _/ yInP (14u) d
y,6(%) 5 /7006 e u=_ | e cosuxdu,
1 e ; 1 [
Yy, (x) = o /700 eyt Inetlul)p—inxgy, — ;/0 e~y In(et1) 065 4 du

satisfy the conditions of Theorem 3, and for 1/2 < «, 8,y < 1 they do not satisty these condi-
tions.
If1 =B =7 <a <2, then forally > 0 we can check that the functions

(7], = —ya sgn(u) |u|* e VI,

B—1
(e (IuDy  (e-yP(luly _ pmylnf (1 Ju) [ _ yBsgn(u) D1+ |”|>},
1+ |ul
In" tIn(e + |u|) }
(e + |u|) In(e + [u]

(47)

(e vr(luDy — (g=yinIn(e+lul)yr _ pmyin Ine+lu) [ — yy sgn(u)
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belong to the space L,, and delta-like kernels Yy (x), ¥y g(x) and ¥y, (x) satisfy the conditions
of Theorem 3.

So, the function f(u) = In(1 + u) is convex upward on the interval (0,00), f(0) = 0 and
f'(0) = 1, then for u > 0 the inequality In(1 + u) < u holds. In view of f(0) = 0 and
f(e —1) =1, then, taking into account an upward convexity of f(u), for0 < u < e — 1 it holds
In(1+u) > u/(e—1). The, in the case 0 < u < e — 1 we get

u

] <In(l+u) <u. (48)

Similarly, one can prove that for 0 < u < e° — e the following inequality holds

u

< In(in(e+u)) < % (49)

Form (48), (49) we get that for all 6 > 0 and 0 < u < e — 1 the inequalities

Cu® <InIn(e+u) < (e —e)u’, u? <In°(14u) < (e—1)°u? (50)
are true.

Using (47) and (50) we can check, that for ally > 0 and 0 < «, 8,y < 1/2 the functions
(e=vlul*y (e=¥¥euDY “and (e=¥¥+(14D)! belong to the space L, and for1/2 < a, B,y < 1 they
do not belong to it. Hence, in the case 0 < «, B,y < 1/2 the delta-like kernels ¥} (x), ¥, 5(x)
and Y, (x) satisfy the conditions of Theorem 3.

In view of the fact that the necessary condition for absolute integrability of the Fourier
transform F(f) is a continuity and boundedness almost everywhere of the function f. There-
fore, from the equalities (29) we get, that the necessary condition for the functions x'¥j(x),
x%¥,p(x) and x¥y ,(x) to be absolute integrable on the whole real axis, is that the functions
(e=vlul*y (e=¥¥eUuDY and (e=v¥2(D)! are almost everywhere bounded for all fixed y > 0. If
1/2 < &, 8,77 < 1, then the relations (47) yield that the functions (e~ ¥I“I)!  (e=¥¥s(1#))! and
(e*y%“”')),’l are not bounded on the whole real axis. That is, for1/2 < «, B,y < 1 the delta-like
kernels Yy (x), ¥y 5(x) and ¥y, (x) do not satisty the conditions of Theorem 3.
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Y poboTi 3HaliAeHO iHTerpaAbHi 306pakeHHs AAS PYHKIIIOHAABHMX IIPOCTOPIB, i30MeTprdaHmX
IIPOCTOpaM HiAMX (PYHKIIIN eKCIIOHEHIIaABHOTO TUITY, SIKi HEOOXiAHI AAST HaBeA€HHSI IPUKAAAIB piB-
HOCTI allpOKCUMALIHIX XapaKTepUCTUK y (pyHKIIOHAABHMX IIPOCTOPaX, i30MeTpUUHIX IPOCTOpaM
HenepioandHMX pyHKIi. OTPUMaHO AOCTaTHI YMOBU AASI HEBiA €MHOCTI A€ABTAIIOAIGHIIX SIAEP, SIKi
BUKOPYCTOBYIOTBCSI AASI TIOOYAOBYM i30MeTpUUHMX (PYHKITIOHAABHMX IIPOCTOPIB 3 Pi3HOIO KiABKICTIO
3MIHHMX.

Kntouosi cnosa i ¢ppasu: AeAbTamoAibHe sIAPO, i30MeTPUYHICTD, IPOCTip 3TOPTOK, alIPOKCHMATHB-
Ha XapaKTepUCTHKa.



