References

  1. Ahmad B., Alsaedi A., Kirane M., Torebek B.T. Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pahpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. doi:10.1016/j.cam.2018.12.030
  2. Gupta I.S., Debnath L. Some properties of the Mittag-Leffler functions. Integral Transforms Spec. Funct. 2007, 18 (5), 329–336. doi:10.1080/10652460601090216
  3. Haubold H.J., Mathai A.M., Saxena R.K. Mittag-Leffler Functions and Their Applications. J. Appl. Math. 2011, 2011. doi:10.1155/2011/298628
  4. Hernández J.E., Gômez J.F. Hermite-Hadamard type inequalities, convex stochastic processes and Katugampola fractional integral. Rev. Integr. Temas Mat. 2018, 36 (2), 133–140. doi:10.18273/revint.v36n2-2018005
  5. Katugampola U.N. New fractional integral unifying six existing fractional integrals. Preprint 2016. doi:10.48550/arXiv.1612.08596
  6. Kotrys D. Hermite-Hadamard inequality for convex stochastic processes. Aequationes Math. 2012, 83 (1-2), 143–151. doi:10.1007/s00010-011-0090-1
  7. Mehreen N., Anwar M. Hermite-Hadamard type inequalities for exponentially \(p\)-convex functions and exponentially s-convex functions in the second sense with applications. J. Inequal. Appl. 2019, 2019 (92). doi:10.1186/s13660-019-2047-1
  8. Nikodem K. On convex stochastic processes. Aequationes Math. 1980, 20 (1), 184–197. doi:10.1007/BF02190513
  9. Okur N., Işcan I., Dizdar E.Y. Hermite-Hadamard type inequalities for p-convex stochastic processes. Int. J. Optim. Control. Theor. Appl. IJOCTA 2019, 9 (2), 148–153. doi:10.11121/ijocta.01.2019.00602
  10. Özcam S. Hermite-Hadamard Type Inequalities for Exponentially p-Convex Stochastic Processes. Sakarya Univ. J. Sci. 2019, 23 (5), 1012–1018. doi:10.16984/saufenbilder.561040
  11. Saxena R.K. Mittag-Leffler Functions and Fractional Calculus. In: Special Functions for Applied Sciences. Springer, New York, 2008, 79–134. doi:10.1007/978-0-387-75894-7_2
  12. Set E., Tomar M., Maden S. Hermite-Hadamard type inequalities for \(s\)-convex stochastic processes in the second sense. Turkish J. Anal. Number Theory 2014, 2 (6), 202–207. doi:10.12691/tjant-2-6-3
  13. Tomar M., Set E., Maden S. Hermite-Hadamard type inequalities for log-convex stochastic processes. J. New Theory 2015, 2, 23–32.
  14. Tomar M., Set E., Bekar N.O. Hermite-Hadamard type inequalities for strongly log-convex stochastic processes. J. Global Eng. Stud. 2014, 1 (2), 53–61.