References
- Abbas M.I. Controllability and Hyers-Ulam stability results of
initial value problems for fractional differential equations via
generalized proportional-Caputo fractional derivative. Miskolc
Math. Notes 2021, 22 (2), 491–502.
doi:10.18514/MMN.2021.3470
- Abbas M.I., Ragusa M.A. On the hybrid fractional differential
equations with fractional proportional derivatives of a function with
respect to a certain function. Symmetry 2021, 13
(2), 264. doi:10.3390/sym13020264
- Abbas M.I. Existence results and the Ulam stability for
fractional differential equations with hybrid proportional-Caputo
derivatives. J. Nonlinear Funct. Anal. 2020, 2020,
1–14. doi:10.23952/jnfa.2020.48
- Abbas M.I. Ulam stability of fractional impulsive differential
equations with Riemann-Liouville integral boundary conditions. J.
Contemp. Math. Anal. 2015, 50 (5), 209–219.
doi:10.3103/S1068362315050015
- Abbas M.I. Existence and uniqueness of Mittag-Leffler-Ulam stable
solution for fractional integro-differential equations with nonlocal
initial conditions. Eur. J. Pure Appl. Math. 2015,
8 (4), 478–498.
- Alzabut J., Abdeljawad T., Jarad F., Sudsutad W. A Gronwall
inequality via the generalized proportional fractional derivative with
applications. J. Inequal. Appl. 2019, 2019,
article number 101. doi:10.1186/s13660-019-2052-4
- Agarwal R., Hristova S., O’Regan D. Ulam type stability for
non-instantaneous impulsive Caputo fractional differential equations
with finite state dependent delay. Georgian Math. J. 2021,
28 (4), 499–517. doi:10.1515/gmj-2020-2061
- Baleanu D., Diethelm K., Scalas E., Trujillo J.J. Fractional Calculus
Models and Numerical Methods. In: Luo A.C.J., Sanjuan M.A.F. (Eds.)
Series on Complexity, Nonlinearity and Chaos, 5. World Scientific:
Singapore, 2012.
- Benchohra M., Bouriah S., Nieto J.J. Existence and Ulam stability
for nonlinear implicit differential equations with Riemann-Liouville
fractional derivative. Demonstr. Math. 2019, 52,
437–450. doi:10.1515/dema-2019-0032
- Boucenna D., Baleanu D., Makhlouf A., Nagy A.M. Analysis and
numerical solution of the generalized proportional fractional Cauchy
problem. Appl. Numer. Math. 2021, 167, 173–186.
doi:10.1016/j.apnum.2021.04.015
- Cuong D.X. On the Hyers-Ulam stability of Riemann-Liouville
multi-order fractional differential equations. Afr. Mat. 2019,
30 (4), 1041–1047. doi:10.1007/s13370-019-00701-3
- Ferraoun S., Dahmani Z. Existence and stability of solutions of a
class of hybrid fractional differential equations involving
RL-operator. J. Interdisciplinary Math. 2020, 23
(4), 885–903. doi:10.1080/09720502.2020.1727617
- Geritz S.A.H., Kisdi E. Mathematical ecology: why mechanistic
models? J. Math. Biol. 2012, 65 (6–7), 1411–1415.
doi:10.1007/s00285-011-0496-3
- Hristova S., Ivanova K. Ulam type stability of non-instantaneous
impulsive Riemann-Liouville fractional differential equations (changed
lower bound of the fractional derivative). AIP Conf. Proc. 2019,
2159 (1), 030015. doi:10.1063/1.5127480
- Hristova S., Abbas M.I. Explicit solutions of initial value
problems for fractional generalized proportional differential equations
with and without impulses. Symmetry 2021, 13 (6),
996. doi:10.3390/sym13060996
- Hyers D.H., Isac G., Rassias Th.M. Stability of Functional
Equations in Several Variables. Birkhäuser, Basel, 1998.
- Hyers D.H. On the stability of the linear functional
equation. Proc. Natl. Acad. Sci. USA. 1941, 27
(4), 222–224. doi:10.1073/pnas.27.4.222
- Jarad F., Abdeljawad T., Alzabut J. Generalized fractional
derivatives generated by a class of local proportional derivatives.
Eur. Phys. J. Spec. Top. 2017, 226 (16), 3457–3471.
doi:10.1140/epjst/e2018-00021-7
- Jarad F., Alqudah M.A., Abdeljawad T. On more general forms of
proportional fractional operators. Open Math. 2020,
18 (1), 167–176. doi:10.1515/math-2020-0014
- Jung S.M. Hyers-Ulam-Rassias Stability of Functional Equations in
Mathematical Analysis. Hadronic Press, Palm Harbor, 2001.
- Ibrahim R.W. Generalized Ulam-Hyers stability for fractional
differential equations. Int. J. Math. Anal. (N.S.) 2012,
23 (05), 1250056. doi:10.1142/S0129167X12500565
- Laadjal Z., Abdeljawad T., Jarad F. On existence-uniqueness
results for proportional fractional differential equations and
incomplete gamma functions. Adv. Difference Equ. 2020,
2020, 641. doi:10.1186/s13662-020-03043-8
- Kilbas A.A., Srivastava H., Trujillo J.J. Theory and Applications of
Fractional Differential Equations. In: Jan van Mill (Ed.) North-Holland
Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
- Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity:
An Introduction to Mathematical Models. World Scientific Publishing
Company: Singapore, Hackensack, NJ, USA, London, UK, Hong Kong, China,
2010. doi:10.1142/p614
- Miller K.S., Ross B. An Introduction to the Fractional Calculus and
Fractional Differential Equations. Wiley-Interscience, John-Wiley and
Sons: New York, NY, USA, 1993.
- Podlubny I. Fractional Differential Equations. Academic Press, San
Diego, 1999.
- Rassias Th.M. On the stability of linear mappings in Banach
spaces. Proc. Amer. Math. Soc. 1978, 72, 297–300.
doi:10.1090/S0002-9939-1978-0507327-1
- Rus I.A. Ulam stabilities of ordinary differential equations in a
Banach space. Carpathian J. Math. 2010, 26 (1),
103–107.
- Samko S., Kilbas A., Marichev O. Fractional Integrals and Drivatives.
Gordon and Breach Science Publishers, Longhorne, PA, 1993.
- Srivastava H.M., Saad K.M. Some new models of the time-fractional
gas dynamics equation. Adv. Math. Models Appl. 2018,
3 (1), 5–17.
- Sudsutad W., Alzabut J., Nontasawatsri A., Thaiprayoon C.
Stability analysis for a generalized proportional fractional
Langevin equation with variable coefficient and mixed
integro-differential boundary conditions. J. Nonlinear Funct. Anal.
2020, 2020, article ID 23, 1–24.
doi:10.23952/jnfa.2020.23
- Ulam S.M. A Collection of Mathematical Problems. Interscience
Publishers, New York, 1968.
- Wang J.R., Zhang Y. Ulam-Hyers-Mittag-Leffler stability of
fractional-order delay differential equations. Optimization 2014,
63 (8), 1181–1190.
doi:10.1080/02331934.2014.906597.
- Xu L., Dong Q., Li G. Existence and Hyers-Ulam stability for
three-point boundary value problems with Riemann-Liouville fractional
derivatives and integrals. Adv. Difference Equ. 2018,
2018, article number 458.
doi:10.1186/s13662-018-1903-5