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Ulam type stability analysis for generalized proportional
fractional differential equations

Hristova S.1, Abbas M.1.2

The main aim of the current paper is to be appropriately defined several types of Ulam stability
for non-linear fractional differential equation with generalized proportional fractional derivative of
Riemann-Liouville type. In the new definitions, the initial values of the solutions of the given equa-
tion and the corresponding inequality could not coincide but they have to be closed enough. Some
sufficient conditions for three types of Ulam stability for the studied equations are obtained, namely
Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability.
Some of them are applied to a fractional generalization of a biological model.
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1 Introduction

Fractional calculus has recently acquired plentiful circulation and great significance be-
cause of its applications in fields of science and engineering. Fractional differential equations
appear strongly in the diffusion process, the process of dynamics, signal and image processing,
etc. For instance, see the books [8,23-26,29,30].

In recent years, there are honorable efforts for obtaining new classes of fractional operators
by introducing more general or new kernels. F. Jarad et al. [18] introduced a new generalized
proportional derivative which is well-behaved and has several advantages over the classical
derivatives as meaning that it generalizes formerly known derivatives in the literature. For
recent contributions relevant to fractional differential equations via generalized proportional
derivatives, see [1-3,10, 15].

On the other hand, stability analysis is one of the most important areas of interest by
researchers of fractional differential equations. Stability allows us to contrast the comport-
ment of solutions beginning at various points. The concept of Ulam stability was initially
launched by S.M. Ulam [32], and then the contributions continued by D.H. Hyers [17] and
Th.M. Rassias [27] in order to obtain significant improvements in this field. For more details
on the recent advances on the topic, we refer to the monographs [16,20] and the research pa-
pers [1,3-5,7,9,11,12,14,21,28,31,33, 34].

The aforementioned works inspires us, in the current paper, to discuss the stability analysis
of an initial value problem (IVP for short) for nonlinear generalized proportional fractional
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Ulam type stability analysis for generalized proportional fractional differential equations 115

differential equations of Riemann-Liouville fractional type (PIVP for short):
(Rg%Pu) () = Au(t) + G (tu(t)), te€lab), O
(a7 1%Pu) (a) = uo,

where u(+) : [a,b] = R, and p € (0,1], « € (0,1), A, up are real constants, X2%f denotes the
generalized proportional fractional derivative of Riemann-Liouville type of order a, ,.#1~%¢
denotes the generalized proportional fractional integral of order 1 —a, and G : [4,b] x R — R
is given continuous function.

We study three types of Ulam stability: Ulam-Hyers (({H) stability, Ulam-Hyers-Rassias
(UHR) stability and generalized Ulam-Hyers-Rassias (GUHR) stability for the PIVP (1).

Note Ulam type stability is studied in [31] for generalized proportional fractional differen-
tial equations of Caputo type. As it is well known in the literature, the initial conditions of any
types of Caputo fractional differential equations are similar to the case of ordinary derivatives.
But it is not the situation with the Riemann-Liouville type as the studied in this paper.

Following are the main contributions of the paper:

- definitions of the classical ones of Ulam type stabilities for nonlinear generalized propor-
tional fractional differential equations, including closeness between the initial value of
the solutions of the equation and the corresponding inequality, are generalized;

- some sufficient conditions for the generalized types of Ulam-Hyers stability, Ulam-
Hyers-Rassia stability and generalized Ulam-Hyers-Rassias stability are obtained;

- application of the theoretical results for obtaining bounds of the solutions of a fractional
generalization of a biological model is presented.

The paper is structured as follows. In Section 2, we recall some useful preliminaries and
auxiliary results. In Section 3, three definitions for Ulam type stability are derived for non-
linear generalized proportional fractional differential equation. Finally, in order to confirm
the validity of the theoretical findings, some of the obtained results are applied to a fractional
generalization of a biological model in Section 4.

2 Preliminaries and auxiliary results

In this section, we recall some definitions and notations for generalized proportional frac-
tional derivative and integral from [18,19].

Definition 1. Take p € (0,1] and « > 0. The generalized proportional fractional integral of
order « of a functionv € L'([a, b]) is defined by

&, ! L) — )" Lo(s)ds
(r*0) () = Zpy [ €7 (=9 ot s
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Definition 2. Takep € (0,1] and « € (0,1). The generalized proportional fractional derivative
of Riemann-Liouville type of order « of a function v is defined by

. 7,* =y »
(5.@ ’Pv) (t) = m/a er (t S) (t—S) U(S) ds

B m (“ o) [T ) vl

dt/ o7 (- J(t—s)~ “v(s)ds),

where (2'°v) (t) = (1 — p)v(t) + pv'(t).

We will provide the following preliminary result which is similar to [23, Lemma 3.2] for
Riemann-Liouville fractional derivative.

Lemma 1 ([15]). Letp € (0,1],a € (0,1) and y(t) € L'([a, b], R). Then

t—a-+

1—
(i) if there exists a limit lim <eTpt(t - a)l_"‘y(t)> = ¢ € R, then also exists a limit

<gf1_"‘"’y) (a) := lin}r <gf1_""py) (1) = cr(“) er

t—a
(i) if (,.717%Py) (a) = k € R, and there exists the limit tlirrﬁr < o (t— a)l_"‘y(t)>, then
—a
—p

_ 1—w a
lim (elﬂpt(t—a)l“"y(f)> = u-

t—a+ I'(a)

Remark 1. According to Lemma 1 the initial value condition in (1) could be replaced by

1—«a
lim <e Pl a)(t—a)l_"‘u(t)> — top

t—a+ ()

Define the set

. e _
Ciap([a, b)) = {x(t)  (a,b] = R: x € C((a,bR), lim ¢ =0t — a)l-ox(t) < oo}
1—
with the norm [[x[[¢, ,, = max;c(y ‘eTf)(tﬁ)(t — a)lf”‘x(t)‘. Note C1_g,([a,b]) is a Banach

space. If u, € Ci_yp([a,b]),n =1,2,...,and |Ju, — ulle, , o) — O thenu € Ci—ap([a,b]).
Consider the linear scalar fractional equation with generalized proportional fractional
derivative and initial value conditions

(F7°0u) (t) = Mu(t) + £(1), € [aD], @
(uflflwu) (a) = ug,

where u(-) : [a,b] = R, f € C([a,b]) and p € (0,1], « € (0,1), A, u are real constants.
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Lemma 2 ([15]). The PIVP (2) has a unique solutionu € Cy_,,([a,b]) given by

s _ « _ a—1
u(t) = uoe(pfl)tTE,xl,X <A <t a) ) <t a)
Y Y

T /at<t—s> 16017 >Eaa<A<t%S)a)f<s>ds, tE (a,b],

p"T(a)

where Ep 4(z) = Z is the Mittag-Leffler function with two parameters (see, e.g., [23]).
=

(]P+‘7)
Based on Lemma 2, it follows the following integral presentation of a solution of PIVP (1).

Lemma 3. Let the function x € Cy_g,([a,b]) be a solution of PIVP (1). Then it satisfies the
integral equality

e e () ()
P 3)

+ﬁ/ﬂt(t—s)"“1 p-D(57 EM<A <t ) > (s,x(s))ds, t& (a,b]

Proposition 1. Let A be a real number, and « € (0,1),p € (0,1]. Then the inequality
t _ 5\ _

o e (5 ) <l (o (52))
a P Al P

holds.
Proof. Using the definition for the Mittag-Leffler function with two parametersand 0 < p < 1,
we obtain

t € la,bl,

P VY g g A(F))
femormer e (1 (2] ) o< [0 By e
o0 t(t S)(n+1)zx 14g B ) An(t_a)(nﬂzx
X:: peT((n+1)a) HX::O e (n+1)al ((n+1)a)
0 a;vz—i—l( a)(n+1)uc a o (A (ﬂ>w>n o —a\*
_ZA:;"WF —I—l)a~|—1):%,;1 F(WPH) _&TE"‘(A(%))_l‘

The case of p = 1 is obvious. O

Proposition 2 ([23]). Forq € (0,1), the following properties

1
0< Epg (=A< ——, t>0,A>0,
‘7‘7( ) r(q)
lim Ey o (—AH) = Eqo(0) = ——
104 M 4 I'(q)

hold.
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Our main proofs are based on the appropriate modification of the classical Gronwall
inequality for generalized proportional fractional integral. We will set up only the results
without the proof one of the inequality in [6, Corollary 3].

Proposition 3. Leta« > 0,p € (0,1]. Let u(t),v(t) be nonnegative locally integrable on |[a, b]
functions, and the function v(t) is nondecreasing. Let B > 0 be a real constant and

top—1

u(t) < o(t) +B/ e Ut — ) Nu(s)ds, te [a,bl.

Then
u(t) < o(t)Eg(BL(a)(t —a)*), t€ [a,b]

3 Ulam type stability

We study three types of Ulam stability: Ulam-Hyers (({H) stability, Ulam-Hyers-Rassias
(UHR) stability and generalized Ulam-Hyers-Rassias (GUHR) stability for the PIVP (1). The
definitions for the studied differential equation with generalized proportional fractional de-
rivative are appropriately changed comparatively to those for ordinary differential equations
given in [28]. Note in the case of ordinary derivatives as well as Caputo type fractional deriva-
tives, the initial value of the corresponding equation could be the same as the value of the
approximating function (the solution of the inequality), but in the case of Riemann-Liouville
type fractional derivatives the initial value of the solution has to be enough close to the one of
the solution of the inequality.

We will consider the following assumptions.

(A1) Let G € C([a,b] x R,R) and there exists a constant L > 0 such that

|G(t,u1) — G(t,u2)| < Llug —up|, t€[a,b], ui,u; €R.
(A2) For any initial value uy € R the PIVP (1) has a solution.

Remark 2. The existence of PIVP (1) is studied in [22] and some conditions for existence and
uniqueness are obtained there (see [22, Theorem 4.3 and Remark 4.8 ]).

Lete > 0and ¢ : [a,b] — [0, c0) be non-decreasing function such that for any ¢ € [a, ] the
inequality fot(t —5)* 1o(s)ds < o holds.

Definition 3. The PIVP (1) is Ulam-Hyers stable stable if there exists a real number ag > 0
such that for each ¢ > 0 and for each solutionw € Ci_,,([a,b]) of the inequality

| (F*rw) (1) - Aw(t) - G (1, w(®) | <&, (4)
there exists a solution u € Ci_y,([a,b]) of PIVP (1) with |ug — wo| < age, where wy =
1—
lim eTp(t_a)(t —a)'"*w(t), such that

t—a+

lw(t) —u(t)| < age, tela,b).
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Definition 4. The PIVP (1) is Ulam-Hyers-Rassias stable with respect to ¢ if there exists a
real number ag , > 0 such that for each ¢ > 0 and for each solution w € Cy_y,([a,b]) of the
inequality

‘ (R2*#w) () — Aw(t) — G (t,w(1)) | < et Q)

there exists a solution u € Cy_y,([a,b]) of PIVP (1) with |ug — wo| < eag,, ¢(a), where wy =

1—
lim eTP(t_a)(t —a)'=*w(t), such that
t—a+

jw(t) —u(t)| <eagq @(t), telab.

Definition 5. The PIVP (1) is generalized Ulam-Hyers-Rassias stable with respect to ¢ if there
exists a real number ag,, > 0 such that for each solutionw € Ci_,,([a,b]) of the inequality

(R rw) (6 = rw(t) = G(t,w(B) | < 9(t) ©)

there exists a solution u € Cy_,([a,b]) of PIVP (1) with |uy — wo| < ag,¢(a), where wy =
—p

1
lim e 7 (t_a)(t —a)'"*w(t), such that
t—a+

\w(t) —u(t)] <agee(t), telabl

Remark 3. A functionw € C_y,([a,b]) is a solution of the inequality (4) if and only if there
exist a function h € C([a, b],R), which depend on w, such that

i) |h(t)| <e,
(i) (R2%Pw) (t) = Aw(t) +G(tw(t)) + h(t)
forallt € [a,b].

Surely, similar remarks can be observed for the inequalities (5) and (6). For inequality (4)
we have the following result.

Lemma 4. LetA € R, « € (0,1),p € (0,1], and the functionw € Ci_,([a,b]) be a solution of
inequality (4). Then it satisfies the inequality

e (1(2)) (59)
g o e (3 (2] ) St
<
— [AIT(

A@) | (A (%)) !

Proof. According to Remark 3 and Definition 3 the function w € Cy_,([a,]]) satisfies the
integral equality

—a . o o a—1
w(t) = w7 By (A(t ) ) (t )
% %

n 1 /at(t _ S)a—le(p—l)<%>gm <)L <t__s>lx> G (s, x(s)) ds (8)

p*T ()

e A AL 0 (t‘—s)) hs)ds, te (ab)

(7)

£ , t € [a,b].
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1o
where wy = tlirr}re ot a)(t —a) = %w(t).
—a

According to (i), 0 < p < 1 and Proposition 1, from equality (8) we obtain

_ o« a—1
‘wa)_woewﬂ>E,,C,“(A<f—”) )(““)
P P

Similarly the following result could be proved.

Lemma 5. Let A < 0, « € (0,1), p € (0,1]. Let a function ¢ € C([a,b],R}) be nonde-
creasing such that fat(t —5)*1o(s)ds < Agg(t), where A, > 0 is a constant. Let a function
w € Ci_y,p([a,b]) be a solution of inequality (5). Then it satisfies the inequality

e (0 (5) (5
—ﬁ/ﬂt(t—s)“leT(t_s)Ew (A (%) ) G (s,w(s)) ds
< LoD Eaa <A (f;)) t€ [a,b].

P'XF(OC) tselabl: t>s

Now, we will study Ulam type stability of the PIVP (1).

Theorem 1 (U H stability). Let A € R, a € (0,1),p € (0,1]. Suppose that
1) conditions (A1) and (A2) are satistied;
2) for any € > 0 the inequality (4) has at least one solution.

Then the PIVP (1) is Ulam-Hyers stable with

(5o (5 (o).

where & = max;c(qp] Ena <A <%)“> and .4 = max; s¢c(qp): t>s Eaa (;\ (t’%s>a>

|1
97 |TAIT(w)

Proof. Lete > 0be an arbitrary number and y € Ci_q,([a, b]) be a solution of the inequality (4),
which exists according to condition (A1).
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el (p_g)l-«

Let yo = tlirrﬁr er y(t) and up € R : |ug — yo| < e. According to condition (A2)
—a
PIVP (1) has an unique solution x € Ci_4,([a,b]). The function x(t) satisfies the integral
equality (3).
According to Lemma 4 we obtain
1 o « . x—1
1) =00 < |0 ) 7 (2 (52) ) (1
1 ' a—1 (P—U(ﬂ) t—s\*
+ W/a(t s)* e P )Equ| A — [Q(S,X(S)) Q(S,y(s))] ds
\i-a F o F_ a—1
+'y(t)_yoe(p )pE“’“<A< pa> ) pa>
Lt e e (5) —s\"
m/a (t S) e e EDC,(X A T g(S,y(S)) ds

_ _L#x#
and B = () We get

x() — ()| < [ﬁ

(052 e (5 e ()

for t € [a, b]. The above inequality proves the claim. O

Theorem 2 (UHR stability). Let A < 0, a,p € (0,1). Suppose that
1) conditions (A1) and (A2) are satistied;

2) there exists a nondecreasing function ¢ € C([0, T}, [0, %)) such that

[ =51 g(5)ds < Agg(t),

where A, > 0 is a constant;
3) for any e > 0 the inequality (5) has at least one solution.

Then the PIVP (1) is Ulam-Hyers-Rassias stable with respect to ¢ with

) [?f&f))/// rels <b;a>m_1] - <L;// v _”)“> ’ ©

where & and # are defined in Theorem 1.
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Proof. Lete > 0be a real number and y € Ci_4,([a, b]) be a solution of the inequality (5) with
the function ¢(t) defined in the condition 2) of the theorem.

Similarly to inequalities (5) and (7) there exists a function 1 € (C([a,b]),R) such that
|h(t)| < eg(t), t € [a,b], and according to Lemma 5 we obtain

L t a1, 1) (5
‘x(t)—y(t)‘ﬁmﬁl(t—s) 1ol )\x(s)—y(s)}ds

+ efgolt) max Eg, <A <t—_s>"‘> +ep(a)é <b _a>a—1.

P'XF(OC) t,selabl: t>s 1Y

According to Proposition 3 with

0T (a
Apop(t) (b—a)“l ( L. >
x(t) —y(t)] <e |2 M+ @(a)E Ei | ——T(a)(t —a)*
()~ y(0)] < | S+ o) (%5 T =)
for t € [a, b]. The above inequality proves the claim. O

Theorem 3 (GUHR stability). Let A < 0, a,p € (0,1). Suppose that
1) conditions 1) and 2) of Theorem 2 are satisfied;
2) the inequality (6) has at least one solution.

Then the PIVP (1) is generalized Ulam-Hyers-Rassias stable with respect to ¢ with ag,
defined by (9).

4 Application to a biological model

In this section, we will apply the obtained results to a biological model and its fractional
generalizations. Also, we will illustrate the non-uniqueness of the bounds in Ulam type
stability.

Consider the population model, where the newborns are randomly distributed over M sites
and offspring landing in an occupied site die. With constant per capita birth and death rates, B
and y respectively, B > p, we obtain the equation (see [13]): N'(t) = BN(t) <1 - %) — uN(t)
(this site-limited model is analogous to the Levins metapopulation model).

Now;, consider the fractional generalization of the model with « € (0,1):

(5.@“4’1\1) (t) = BN(t) <1 - %) — uN(t) (10)

with the initial conditions

lim (e 7 N () ) = No.
t—0+
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In this case A = —pu < B, G(t,x) = —£x2 4 Bx. Then

G(t,x) —G(tu)| = ‘ - % <x2—u2) + B(x —u)

< <B+%(x+u)> |x — ul.

We will consider the case of bounded population N < W, W > 0. Therefore, L = B + 28
and assumption (A1) is satisfied.

Consider the partial case B = 0.7, » = 0.01,0 =0.1,a =0,b = 6,2 = 0.2, = 2, M = 1000,
W =150, y = 0.1. Then

Ly <oc,1’%p(b—a)> 230007, (02, = (6—0))

T@)(1—p)*  I(02)(1—01)2

~ 0929379 < 1,

where 7(a, t) is the lower incomplete Gamma function.
According to [22, Theorem 4.2] the PIVP (10) has a solution in Cy ([a, b]) According to
Lemma 3 this solution has the integral presentation

_q)t=a t—a\*\ [t—a\*!
N(t) = Noe* 7" Eu <_H< pa> )( pa>

+ plxrl((x)/ut(t — s)”‘_le(p_l)(%s)EM <—y <t_75>“> <B N(s)—%N%s)) ds, t€ (a,b].

. . £l . Loy . Loy el
Consider the function y(t) = e ¢ 't2. Then lim (e P tl"‘y(t)> = lim <e Pl t2> =0.

t—0+ t—0+
Apply the equality

( gapxﬁ 1 pT ) (i’) _ par(ﬁ))tﬁ—a—le% (11)

and get

R gpu,p _ Rgap p;ltZZ pzxr(3) 2—u ey
<09 y)t 09"Pe r 't 7“3_“)15 er .

Thus, for any real number ¢ > 0 for the partial values of the parameters given above, we

p=1
consider the function y(t) = 334ee ¢ 't2. This function satisfies the inequality

(K7*2y) (@) -+ n) = By(0) + 392(0)

O.lO-ZF(B) 2-02,—9¢ 9t 2 0.7  18tnny2.2,4
—02 — ‘ - - 12
‘7“3 0.2)33481' e "4 (0.01 —0.7)e 7*334et” + —— 1000 334°¢“t (12)
0.10-2F(3) 0.7
—9¢ 2-0.2 2 —9¢ 4|
=334¢e 7“3 0_2>t +(0.01 — 0.7)t" 4+ —1000e 334¢t g, € [0,6].

: ot 01021 -
The graphs of the functions g(t) =334 ee~% To- 0(2)) 27024 (0.01 — 0.7)?+ 1%0 %334 ¢ t4‘

and g»(t) = 33486*%%6’%3342 t* are plotted on Figures 1 and 2, respectively.
It could be seen the function g(¢) has very small values and therefore the inequality (12)
holds.
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nnnnnn

— 1 3347 exp(=9 1) exp(=91) 0.7 ¢4
0.192 1) 1000
G-02)

— 334exp-90)

= 4001 -07)2)

Figure 1. Graph of the function g(t) Figure 2. Graph of the function g»(y)

According to Theorem 1, the solution N(t) of (10) is UH stable with

6 0.2 6 0.2—-1 LE 02
Eoo (—0.1 <07> > —1+& (07) Eo2 (0.10‘26 ) ~ 0.8395,

where & = max;e g F0202 (—0.1 (ﬁ)o'z) ~ 0.217825.
Therefore, the solution N(#) with 0 < Ny < 0.8395¢ satisfies the inequality

1
| —0.1]T(0.2)

ag =

-1
'N(t) 334ee 7 2

-1
<08395¢ or O0<N(t)<e (334epf’tt2 + 0.8395> ,

fort € [0, 6], i.e. by UH stability we obtain bounds of the N(t). It could be seen that this bound
is better than W for e < 47.
Since in the studied example A < 0, we could study also UHR stability. Consider the
1 1— 1- -1
function y(t) = ¢'7 '1-% Then lim <67ptt1”‘y(t)> = tliror}r <eTptt1”‘etht1”‘> = 0.
—

t—0+
Apply the equality (11) with B = 2 — a and get
p'r(2—a)
I'(2—2a)

p-1 p-1
(5.@’*@) (t) = 8gppe v 17 = H2% 0 !,
Thus for any real number ¢ > 0 for the partial values of the parameters given above, we
o1
consider the function y(t) = ge # 't!~%, This function satisfies the inequality (see Figure 3)

P T(2—a) 1 9y 1 eliga | B o 5lotn o4
E = ¢ 7 re(p—Bler ¥4 —e%ep 't
‘8 I(2—2a) ¢ ey —Be ME ¢

T (2 —w)

[(2 —2a)

0.1921(2 — 0.2) 102
I(2-04)

p-1 B o1
< gelv e t*+(u—B)+ eMePP fi-e (13)

VA
+(0.01 — 07) + 627 ditpa-02

01-1
< 4T 102
- 1000

< eg(t)

for t € [0,6] with ¢(t) = t*8 +0.01.
Consider the integral in condition 2) of Theorem 2 (see Figure 4)

/0 (= s)Tp(s) ds = /0 (= )02 (98 1 0.01)ds < 7g(t), t € [0,6] (14)

i.e. the condition 2) of Theorem 2 is satisfied with Ay, = 7.
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30

— 0.051°2 +4.27584 (!
0020 84001 15 o

— 7(f+0.1
s 0.8 [01°2r2-0.2) 0.07exp(=9.0) " ( )
o01s — exp(=9.0 % (SR 4 0,01 - 0.7 + HERET)
o010

5
0.005

0.002 0.004 0.006 0.008 0.010 1 2 3 4 5 6

Figure 3. Illustration of the inequality (13) Figure 4. Illustration of the inequality (14)

According to Theorem 2 the PIVP (10) is Ulam-Hyers-Rassias stable with respect to
@(t) = t98 4 0.01 and the coefficient

7 (60'8 4 001) F_g 0.1 6 —0.8
S [ A E 01— 0.01¢ | —
a6 [ 0.1920(02) tsefog) s 202 (0.1 ) " (0-1>

0.7(1+ 20)&
x Eg2 (—( 010¥§°0) 602 | ~ 4.18953.

Therefore,
IN(t) — e *"t"%] < 4.18953¢, t€[0,6],

where 0 < Ny < 4.18953 . Note that € < 35.8036, because W = 150.

Acknowledgments

The research is supported by the Bulgarian National Science Fund under Project KP-06-
N32/7.

References

[1] Abbas M.I. Controllability and Hyers-Ulam stability results of initial value problems for fractional differential
equations via generalized proportional-Caputo fractional derivative. Miskolc Math. Notes 2021, 22 (2), 491-502.
doi:10.18514/ MMN.2021.3470

[2] Abbas M.I.,, Ragusa M.A. On the hybrid fractional differential equations with fractional proportional derivatives of a
function with respect to a certain function. Symmetry 2021, 13 (2), 264. doi:10.3390/sym13020264

[3] Abbas M.I. Existence results and the Ulam stability for fractional differential equations with hybrid proportional-
Caputo derivatives. ]. Nonlinear Funct. Anal. 2020, 2020, 1-14. doi:10.23952 /jnfa.2020.48

[4] Abbas M.I. Ulam stability of fractional impulsive differential equations with Riemann-Liouville integral boundary
conditions. . Contemp. Math. Anal. 2015, 50 (5), 209-219. do0i:10.3103/51068362315050015

[5] Abbas M.I. Existence and uniqueness of Mittag-Leffler-Ulam stable solution for fractional integro-differential equa-
tions with nonlocal initial conditions. Eur. ]. Pure Appl. Math. 2015, 8 (4), 478-498.

[6] Alzabut]., Abdeljawad T., Jarad F., Sudsutad W. A Gronwall inequality via the generalized proportional fractional
derivative with applications. ]. Inequal. Appl. 2019, 2019, article number 101. doi:10.1186/513660-019-2052-4

[7] Agarwal R., Hristova S., O'Regan D. Ulam type stability for non-instantaneous impulsive Caputo fractional differ-
ential equations with finite state dependent delay. Georgian Math. J. 2021, 28 (4), 499-517. d0i:10.1515/gm;j-2020-
2061

[8] Baleanu D., Diethelm K., Scalas E., Trujillo ]J.J. Fractional Calculus Models and Numerical Methods. In:
Luo A.C]J., Sanjuan M.A'F. (Eds.) Series on Complexity, Nonlinearity and Chaos, 5. World Scientific: Singa-
pore, 2012.



126

Hristova S., Abbas M.I.

[9]

[10]

(1]

[12]

(13]

[15]

(16]

(17]

(18]

[21]

[26]
[27]

(28]

Benchohra M., Bouriah S., Nieto J.J. Existence and Ulam stability for nonlinear implicit differential equations with
Riemann-Liouville fractional derivative. Demonstr. Math. 2019, 52, 437-450. d0i:10.1515/dema-2019-0032

Boucenna D., Baleanu D., Makhlouf A., Nagy A.M. Analysis and numerical solution of the generalized propor-
tional fractional Cauchy problem. Appl. Numer. Math. 2021, 167, 173-186. d0i:10.1016/j.apnum.2021.04.015

Cuong D.X. On the Hyers-Ulam stability of Riemann-Liouville multi-order fractional differential equations. Afr.
Mat. 2019, 30 (4), 1041-1047. doi:10.1007 /s13370-019-00701-3

Ferraoun S., Dahmani Z. Existence and stability of solutions of a class of hybrid fractional differential equations
involving RL-operator. J. Interdisciplinary Math. 2020, 23 (4), 885-903. doi:10.1080/09720502.2020.1727617

Geritz S.A.H., Kisdi E. Mathematical ecology: why mechanistic models? J. Math. Biol. 2012, 65 (6-7), 1411-1415.
do0i:10.1007 /s00285-011-0496-3

Hristova S., Ivanova K. Ulam type stability of non-instantaneous impulsive Riemann-Liouville fractional differ-
ential equations (changed lower bound of the fractional derivative). AIP Conf. Proc. 2019, 2159 (1), 030015. doi:
10.1063/1.5127480

Hristova S., Abbas M.I. Explicit solutions of initial value problems for fractional generalized proportional differential
equations with and without impulses. Symmetry 2021, 13 (6), 996. doi:10.3390/sym13060996

Hyers D.H., Isac G., Rassias Th.M. Stability of Functional Equations in Several Variables. Birkhaduser, Basel,
1998.

Hyers D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA. 1941, 27 (4), 222-224.
doi:10.1073/ pnas.27.4.222

Jarad F., Abdeljawad T., Alzabut J. Generalized fractional derivatives generated by a class of local proportional
derivatives. Eur. Phys. J. Spec. Top. 2017, 226 (16), 3457-3471. doi:10.1140/ epjst/e2018-00021-7

Jarad F.,, Alqudah M.A., Abdeljawad T. On more general forms of proportional fractional operators. Open Math.
2020, 18 (1), 167-176. doi:10.1515/math-2020-0014

Jung S.M. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press,
Palm Harbor, 2001.

Ibrahim R.W. Generalized Ulam-Hyers stability for fractional differential equations. Int. J. Math. Anal. (N.S.) 2012,
23 (05), 1250056. doi:10.1142 /50129167X12500565

Laadjal Z., Abdeljawad T., Jarad F. On existence-uniqueness results for proportional fractional differential equations
and incomplete gamma functions. Adv. Difference Equ. 2020, 2020, 641. doi:10.1186/513662-020-03043-8

Kilbas A.A., Srivastava H., Trujillo J.J. Theory and Applications of Fractional Differential Equations. In:
Jan van Mill (Ed.) North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Mod-
els. World Scientific Publishing Company: Singapore, Hackensack, NJ, USA, London, UK, Hong Kong,
China, 2010. doi:10.1142/ p614

Miller K.S., Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley-
Interscience, John-Wiley and Sons: New York, NY, USA, 1993.

Podlubny I. Fractional Differential Equations. Academic Press, San Diego, 1999.

Rassias Th.M. On the stability of linear mappings in Banach spaces. Proc. Amer. Math. Soc. 1978, 72, 297-300.
d0i:10.1090/50002-9939-1978-0507327-1

Rus I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 2010, 26 (1),
103-107.

Samko S., Kilbas A., Marichev O. Fractional Integrals and Drivatives. Gordon and Breach Science Publishers,
Longhorne, PA, 1993.

Srivastava H.M., Saad K.M. Some new models of the time-fractional gas dynamics equation. Adv. Math. Models
Appl. 2018, 3 (1), 5-17.



Ulam type stability analysis for generalized proportional fractional differential equations 127

[31] Sudsutad W., Alzabut J., Nontasawatsri A., Thaiprayoon C. Stability analysis for a generalized proportional
fractional Langevin equation with variable coefficient and mixed integro-differential boundary conditions. ]. Nonlinear
Funct. Anal. 2020, 2020, article ID 23, 1-24. d0i:10.23952/jnfa.2020.23

[32] Ulam S.M. A Collection of Mathematical Problems. Interscience Publishers, New York, 1968.

[33] Wang J.R., Zhang Y. Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations. Optimiza-
tion 2014, 63 (8), 1181-1190. doi:10.1080/02331934.2014.906597.

[34] Xu L., Dong Q., Li G. Existence and Hyers-Ulam stability for three-point boundary value problems with
Riemann-Liouville fractional derivatives and integrals. Adv. Difference Equ. 2018, 2018, article number 458.
doi:10.1186/513662-018-1903-5

Received 04.07.2021
Revised 04.05.2023

Xpicrosa C., Abbac M.I. Ananis cmabinernocmi muny Yaama 015 y3azanoHeHUx OugpepeHyiasoHux pie-
HAHb 3 nponopyitiHumu opobosumu noxionumu // Kaprnarcbki MaTteM. my6a. — 2024. — T.16, Nel. — C.
114-127.

OCHOBHOIO METOIO AaHOI pOOOTH € BiATIOBiAHe BI3HAUEHHS KiABKOX THIIB CTiMiKOCTi YAaMa AAS
HeAiHilfHOTO ApO60BOTO AVI(pepeHITiaABHOTO PiBHSIHHS 3 y3araAbHEHOIO POIOPLIHOI ApOo6OBOIO
noxiaHoro Tty PiMaHa-AiyBins. Y HOBMX BU3HAUeHHSIX IIOYaTKOBI 3HaUeHHSI pO3B’sI3KiB AAHOTO PiB-
HSIHHSI Ta BiATIOBiAHOI HEpiBHOCTI He MOXYTb 36iraTicsi, are BOHM MafOTh OYTI AOCTaTHBO OAM3BKI-
M. OTpuMaHO AesIKi AOCTaTHI YMOBM AASI TPbOX THMIIB CTiMIKOCTI YAaMa AASI AOCAIAXKYBaHMX piB-
HSIHB, a caMe CTilikocTi Yaama-Xaliepca, cTiikocTi Yaama-Xaviepca-Pacciaca Ta y3araabHeHOI CTili-
KocTi Yaama-Xartepca-Pacciaca. Aesiki 3 HMX 3aCTOCOBYIOTBCSI AASI APOOOBOTO y3araAbHEHHsI 6i0A0-
TigHOI MOAEAI.

Kntouoei cnoea i ppasi: yzararbHeHa IIPOIOPIIiiHa ApoboBa moxiaHa, pyHkuis MitTar-Aedaepa,
CTiVIKiCTD THITy YAaMa.



