References

  1. Chaichenko S., Savchuk V., Shidlich A. Approximation of functions by linear summation methods in the Orlicz-type spaces. J. Math. Sci. 2020, 249 (5), 705–719. doi:10.1007/s10958-020-04967-y (translation of Ukrain. Mat. Visnyk 2020, 17 (2), 152–170. (in Ukrainian))
  2. Hrabova U.Z., Kal’chuk I.V. Approximation of the classes \(W^r_{\beta, \infty}\) by three-harmonic Poisson integrals. Carpathian Math. Publ. 2019, 11 (2), 321–334. doi:10.15330/cmp.11.2.321-334
  3. Hrabova U.Z., Kal’chuk I.V., Stepaniuk T.A. On the approximation of the classes \(W^r_{\beta}H^{\alpha}\) by biharmonic Poisson integrals. Ukrainian Math. J. 2018, 70 (5), 719–729. doi:10.1007/s11253-018-1528-6 (translation of Ukrain. Mat. Zh. 2018, 70 (5), 625–634. (in Ukrainian))
  4. Hrabova U.Z., Kal’chuk I.V., Stepaniuk T.A. Approximative properties of the Weierstrass integrals on the classes \(W^r_{\beta}H^{\alpha}\). J. Math. Sci. 2018, 231 (1), 41–47. doi:10.1007/s10958-018-3804-2 (translation of Ukrain. Mat. Visnyk 2017, 14 (3), 361–369. (in Ukrainian))
  5. Pozharska K.V., Pozharskyi A.A. Recovery of continuous functions from their Fourier coefficients known with error. Res. Math. 2020, 28 (2), 24–34. doi:10.15421/242008
  6. Kal’chuk I.V., Kharkevych Yu.I., Pozharska K.V. Asymptotics of approximation of functions by conjugate Poisson integrals. Carpathian Math. Publ. 2020, 12 (1), 138–147. doi:10.15330/cmp.12.1.138-147
  7. Kharkevych Yu.I., Pozharska K.V. Asymptotics of approximation of conjugate functions by Poisson integrals. Acta Comment. Univ. Tartu. Math. 2018, 22 (2), 235–243. doi:10.12697/ACUTM.2018.22.19
  8. Magaril-Il’yaev G.G., Osipenko K.Y. Optimal recovery of functions and their derivatives from Fourier coefficients prescribed with an error. Sb. Math. 2002, 193 (3), 387–407. doi:10.1070/SM2002v193n03ABEH000637 (translation of Mat. Sbornik 2002, 193 (3), 79–100. doi:10.4213/sm637 (in Russian))
  9. Serdyuk A.S., Hrabova U.Z. Order estimates of the uniform approximations by Zygmundsums on the classes of convolutions of periodic functions. Carpathian Math. Publ. 2021, 13 (1), 68–80. doi:10.15330/cmp.13.1.68-80
  10. Sharipov K. On the recovery of continuous functions of two variables from noisy Fourier coefficients. J. Numer. & Appl. Math. 2012, 109 (3), 116–124.
  11. Shydlich A.L. Saturation of the linear methods of summation of Fourier series in the spaces \(S^p_{\varphi}\) Ukrainian Math. J. 2008, 60 (6), 950–966. doi:10.1007/s11253-008-0107-7 (translation of Ukrain. Mat. Zh. 2008, 60 (6), 815–828. (in Ukrainian))
  12. Solodky S.G., Sharipov K.K. Summation of smooth functions of two variables with perturbed Fourier coefficients. J. Inverse Ill-Posed Probl. 2015, 23 (3), 287–297. doi:10.1515/jiip-2013-0076
  13. Solodky S.G., Stasyuk S.A. Estimates of efficiency for two methods of stable numerical summation of smooth functions. J. Complexity 2020, 56, 101422. doi:10.1016/j.jco.2019.101422
  14. Stepanets A.I., Rukasov V.I. Spaces \(S^p\) with nonsymmetric metric. Ukrainian Math. J. 2003, 55 (2), 322–338. doi:10.1023/A:1025472514408 (translation of Ukrain. Mat. Zh. 2003, 55 (2), 264–277. (in Russian))
  15. Stepanets A.I. Best approximations of \(q\)-ellipsoids in spaces \(S^{p, \mu}_{\varphi}\). Ukrainian Math. J. 2004, 56 (10), 1646–1652. doi:10.1007/s11253-005-0140-8 (translation of Ukrain. Mat. Zh. 2004, 56 (10), 1378–1383. (in Russian))
  16. Tihonov A.N. On the solution of ill-posed problems and the method of regularization. Dokl. Akad. Nauk SSSR 1963, 151 (3), 501–504. (in Russian)
  17. Tihonov A.N. On stable summability methods for Fourier series. Dokl. Akad. Nauk SSSR 1964, 156 (2), 268–271. (in Russian)