References
- Demkiv I.I. On properties of Bernstein-type operator polynomials
that approximate the Urysohn operator. Ukrainian Math. J. 2004,
56 (9), 1391–1402. doi:10.1007/s11253-005-0123-9
(translation of Ukrain. Mat. Zh. 2004, 56 (9),
1172–1181. (in Ukrainian))
- Demkiv I.I., Makarov V.L. Approximation of the Urysohn operator
by operator polynomials of Stancu type. Ukrainian Math. J. 2012,
64 (3), 318–343. doi:10.1007/s11253-012-0652-y
(translation of Ukrain. Mat. Zh. 2012, 64 (3), 318–343.
(in Ukrainian))
- Demkiv I.I. Interpolation functional polynomial of the fourth
order which does not use substitution rule. J. Numer. Appl. Math.
2010, 100 (1), 40–59.
- Demkiv I.I. An interpolation functional third-degree polynomial
that does not use substitution rules. J. Math. Sci. 2012,
180 (1), 34–50. doi:10.1007/s10958-011-0627-9
(translation of Mat. Metody Fiz.-Mekh. Polya 2010,
53 (3), 46–59. (in Ukrainian))
- Baranetskij Y.O., Demkiv I.I., Kopach M.I., Obshta A.F. The
interpolation functional polynomial: the analogue of the Taylor
formula. Mat. Stud. 2018, 50 (2), 198–203.
doi:10.15330/ms.50.2.198-203
- Makarov V.L., Demkiv I.I. Relation between interpolating integral
continued fractions and interpolating branched continued fractions.
J. Math. Sci. 2010, 165 (2), 171–180.
doi:10.1007/s10958-010-9787-2 (translation of Mat. Metody Fiz.-Mekh.
Polya 2008, 51 (3), 13–20. (in Ukrainian))
- Makarov V.L., Demkiv I.I. Interpolating integral continued
fraction of the Thiele type. J. Math. Sci. 2017,
220 (1), 50–58. doi:10.1007/s10958-016-3167-5
(translation of Mat. Metody Fiz.-Mekh. Polya 2014,
57 (4), 44–50. (in Ukrainian))
- Makarov V.L., Demkiv I.I. Abstract interpolating fraction of the
Thiele type. J. Math. Sci. 2018, 231 (4), 536–546.
doi:10.1007/s10958-018-3832-y (translation of Mat. Metody Fiz.-Mekh.
Polya 2016, 59 (2), 50–57. (in Ukrainian))
- Makarov V.L., Demkiv I.I. Abstract interpolation by continued
Thiele-type fractions. Cybernet. Systems Anal. 2018,
54 (1), 122–129. doi:10.1007/s10559-018-0013-4
- Demkiv I., Ivasyuk I., Kopach M. Interpolation integral continued
fraction with twofold node. Math. Model. Comput. 2019,
6 (1), 1–13. doi:10.23939/mmc2019.01.001
- Jones W.B., Thron W.J. Continued fractions: analytic theory and
applications. Mir, Moscow, 1985. (in Russian)
- Makarov V.L., Demkiv I.I., Mykhalchuk B.R. Necessary and
sufficient conditions for the existence of the functional interpolation
polynomial on the continual set of interpolation nodes. Dopov.
Nats. Akad. Nauk Ukr. 2003, (7), 7–12. (in Ukrainian)