References
- Albert A.A. Non-associative algebras. I, II. Ann. of Math.
(2) 1942, 43 (4), 685–723.
- Alsaody S., Gille P. Isotopes of octonion algebras, \(G_2\)-torsors and triality. Adv. Math.
2019, 343, 864–909. doi:10.1016/j.aim.2018.12.003
- Bai C., Bai R., Guo L., Wu Y. Transposed Poisson algebras,
Novikov-Poisson algebras and \(3\)-Lie
algebras. arXiv:2005.01110 [math.QA].
doi:10.48550/arXiv.2005.01110
- Boers A.H. The nucleus in a non-associative ring. Indag.
Math. (N.S.) 1971, 33, 464–470.
- Burde D., Ender C. Commutative post-Lie algebra structures on
nilpotent Lie algebras and Poisson algebras. Linear Algebra Appl.
2020, 584, 107–126. doi:10.48550/arXiv.1903.00291
- Dzhumadil'daev A. Associative-admissible algebras. In: list of titles
and abstracts of the Intern. Workshop on Non-Associative Algebras,
Porto, Portugal, April 29–May 3, 2019, p. 6. Available online:
https://cmup.fc.up.pt/nonassociativePorto2019/wp-content/uploads/2019/04/abstracts.pdf#page=6.
- Elduque A., Montaner F. On mutations of associative
algebras. J. Korean Math. Soc. 1991, 28 (1),
143–156.
- Ferreira B., Kaygorodov I., Lopatkin V. \(\frac{1}{2}\)-derivations of Lie algebras
and transposed Poisson algebras. Rev. R. Acad. Cienc. Exactas Fis.
Nat. Ser. A Mat. RACSAM 2021, 115 (142), 1–19.
doi:10.1007/s13398-021-01088-2
- Glizburg V., Pchelintsev S. Isotopes of simple algebras of
arbitrary dimension. Asian-Eur. J. Math. 2020, 13
(6), 1–19. doi:10.1142/S1793557120501089
- Gorshkov I., Kaygorodov I., Popov Yu. Degenerations of Jordan
algebras and ”Marginal” algebras. Algebra Colloq. 2021,
28 (2), 281–294. doi:10.1142/S1005386721000225
- Ismailov N., Kaygorodov I., Volkov Yu. Degenerations of Leibniz
and anticommutative algebras. Canad. Math. Bull. 2019,
62 (3), 539–549. doi:10.4153/S0008439519000018
- Kantor I.L. Certain generalizations of Jordan algebras.
Trudy Sem. Vektor. Tenzor. Anal. 1972, 16, 407–499. (in
Russian)
- Kantor I.L. The universal conservative algebra. Sib. Math.
J. 1990, 31 (3), 388–395. doi:10.1007/BF00970345
- Kaygorodov I. On the Kantor product. J. Algebra Appl. 2017,
16 (9), 1750167. doi:10.1142/S0219498817501675
- Kaygorodov I., Lopatin A., Popov Yu. Conservative algebras of
\(2\)-dimensional algebras. Linear
Algebra Appl. 2015, 486, 255–274.
doi:10.1016/j.laa.2015.08.011
- Kaygorodov I., Zusmanovich P. On anticommutative algebras for
which \([R_a, R_b]\) is a
derivation. J. Geom. Phys. 2021, 163, 104113.
doi:10.1016/j.geomphys.2021.104113
- Kupershmidt B. Phase Spaces of Algebras. Mathematics (UTSI).
Publications and Other Works, 2010.
- Kuzmin E. Binary Lie algebras of small dimensions. Algebra
Logic 1998, 37 (3), 181–186.
- Malcev A. On a representation of nonassociative rings.
Uspekhi Mat. Nauk 1952, 7 (1), 181–185. (in
Russian)
- Pchelintsev S. Isotopes of alternative algebras in characteristic
not equal to \(3\). Izv. Math.
2020, 84 (5), 1002–1015.
- Rais Khan M. On quasi-commutative Jordan algebras. Math.
Japon. 1980, 24 (5), 479–487.
- Remm E. Weakly associative algebras, Poisson algebras and
deformation quantization. Comm. Algebra 2021, 49
(9), 3881–3904. doi:10.1080/00927872.2021.1909058
- Saha R., Towers D. On certain classes of algebras in which
centralizers are ideals. J. Lie Theory 2021, 31
(4), 991–1002. doi:10.48550/arXiv.2004.12110
- Zakharov A. Novikov-Poisson algebras of low dimension. Sib.
Èlektron. Mat. Izv. 2015, 12, 381–393. (in Russian)
- Zusmanovich P. Special and exceptional mock-Lie algebras.
Linear Algebra Appl. 2017, 518, 79–96. doi:10.1016/j.laa.2016.12.029