References

  1. Cobzaş S. Functional Analysis in Asymmetric Normed Spaces. Frontiers in Mathematics, Birkhäuser, Springer Basel AG, Basel, 2013.
  2. Cross R.W. Multivalued Linear Operators. Marcel-Dekker, New York, 1998.
  3. Alegre C., Ferrando I. Quotient subspaces of asymmetric normed linear spaces. Bol. Soc. Mat. Mex. 2007, 3 (2), 357–365.
  4. Alegre C., Romaguera S., Veeramani P. The Uniform Boundedness Theorem in Asymmetric Normed Spaces. Abstr. Appl. Anal. 2012, 1–8. doi:10.1155/2012/809626
  5. Ferrer J., Gregori V., Alegre C. Quasi-uniform structures in linear lattices. Rocky Mountain J. Math. 1993, 23 (3), 877–884. doi:10.1216/rmjm/1181072529
  6. Garcı́a-Raffi L.M., Sánchez-Pérez R. The dual space of an asymmetric normed linear space. Quaest. Math. 2003, 26 (1), 83–96. doi:10.2989/16073600309486046
  7. Latreche F., Dahia E. Multilinear operators between asymmetric normed spaces. Colloq. Math. 2020, 161 (2),–171. doi:10.4064/cm7814-6-2019
  8. Mabula M.D., Cobzaş S. Zabrejko’s lemma and the fundamental principles of functional analysis in the asymmetric case. Topology Appl. 2015, 184, 1–15. doi:10.1016/j.topol.2015.01.010
  9. Romaguera S., Schellekens M. On the structure of the dual complexity space: the general case. Extracta Math. 1998, 13 (2), 249–253.
  10. Romaguera S., Schellekens M. Quasi-metric properties of complexity spaces. Topology Appl. 1999, 98 (1–3),–322. doi:10.1016/S0166-8641(98)00102-3
  11. Romaguera S., Schellekens M. Weightable quasi-metric semigroups and semilattices. Electron. Notes Theor. Comput. Sci. 2001, 40, 347–358. doi:10.1016/S1571-0661(05)80061-1
  12. Romaguera S., Schellekens M. The quasi-metric of complexity convergence. Quaest. Math. 2000, 23 (3), 359–374. doi:10.2989/16073600009485983