References

  1. Acar T., Mursaleen M., Deveci Ş.N. Gamma operators reproducing exponential functions. Adv. Difference Equ. 2020, 2020, 423. doi:10.1186/s13662-020-02880-x
  2. Agratini O. On an approximation process of integral type. Appl. Math. Comput. 2014, 236 (1), 195–201. doi:10.1016/j.amc.2014.03.052
  3. Aktaş R., Çekim B., Taşdelen F. A Kantorovich-Stancu type generalization of Szasz operators including Brenke-type polynomials. J. Funct. Spaces 2013, 2013, 935430. doi:10.1155/2013/935430
  4. Aktaş R., Söylemez D., Taşdelen F. Stancu type generalization of Szász-Durrmeyer operators involving Brenke-type polynomials. Filomat 2019, 33 (3), 855–868.
  5. Aral A., Inoan D., Raşa I. On the generalized Szász-Mirakjan operators. Result Math. 2014, 65 (3–4), 441–452. doi:10.1007/s00025-013-0356-0
  6. Arpaguş S., Olgun A. Approximation properties of modified Baskakov Gamma operators. Facta Univ. Ser. Math. Inform. 2020, 36 (1), 125–141. doi:10.22190/FUMI200325011A
  7. Consul P.C., Jain G.C. A generalization of the poisson distribution. Tecnometrics 1973, 15 (4), 791–799. doi:10.2307/1267389
  8. Çekim B., İçöz G., Aktaş R. Kantorovich-Stancu type operators including Boas-Buck type polynomials. Hacet. J. Math. Stat. 2019, 48 (2), 460–471. doi:10.15672/HJMS.2017.528
  9. Deniz E. Quantitative estimates for Jain-Kantorovich operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016, 65 (2), 121–132. doi:10.1501/COMMUA1_0000000764
  10. Deveci S.N., Acar T., Alagöz O. Approximation by Gamma type operators. Math. Methods Appl. Sci. 2020, 43 (5), 2772–2782. doi:10.1002/mma.6083
  11. Erençin A., Başcanbaz-Tunca G. Approximation properties of a class of linear positive operators in weighted spaces. C. R. Acad. Bulgare Sci. 2010, 63 (10), 1397–1404.
  12. Farcaş A. An asymptotic formula for Jain’s operators. Stud. Univ. Babeş-Bolyai Math. 2012, 57 (4), 511–517.
  13. Gadjiev A.D. Theorems of the type of P.P. Korovkin’s theorems. Math. Notes 1976, 20 (5), 995–998. doi:10.1007/BF01146928 (translation of Math. Zametki 1976, 20 (5), 781–786. (in Russian))
  14. Jain G.C. Approximation of functions by a new class of linear operators. J. Aust. Math. Soc. 1972, 13 (3), 271–276. doi:10.1017/S1446788700013689
  15. Kajla A. On the Bézier variant of the Srivastava-Gupta operators. Constr. Math. Anal. 2018, 1 (2), 99–107. doi:10.33205/cma.465073
  16. Kumar A., Mishra L.N. Approximation by modified Jain-Baskakov-Stancu operators. Tbilisi Math. J. 2017, 10 (2), 185–199. doi:10.1515/tmj-2017-0035
  17. Lupaş A., Müller M. Approximations eigenschaften der Gamma operatoren. Math. Z. 1967, 98, 208–226.
  18. Mishra V.N., Sharma P., Birou M.M. Approximation by modified Jain-Baskakov operators. Georgian Math. J. 2015, 27 (3), 403–412. doi:10.1515/gmj-2019-2008
  19. Mishra V.N., Patel P. Some approximation properties of modified Jain-Beta operators. J. Calc. Var. 2013, 2013, 489249. doi:10.1155/2013/489249
  20. Olgun A., Taşdelen F., Erençin A. A generalization of Jain’s operators. Appl. Math. Comput. 2015, 266 (C), 6–11. doi:10.1016/j.amc.2015.05.060
  21. Pandey E., Mishra R.K., Pandey S.P. Approximation properties of some modified summation-integral type operator. Int. J. Soft Comput. Eng. 2015, 5 (1), 2231–2307.
  22. Rempulska L., Skorupka M. Approximation properties of modified gamma operators. Integral Transforms Spec. Funct. 2007, 18 (9), 653–662. doi:10.1080/10652460701510527
  23. Shunsheng G., Qiulan Q. On pointwise estimate for Gamma operators. Anal. Theory Appl. 2002, 18 (3), 93–98.
  24. Tarabie S. On Jain–Beta linear operators. App. Math. Inf. Sci. 2012, 6 (2), 213–216.
  25. Taşdelen F., Aktaş R., Altın A. A Kantorovich type of Szasz operators including Brenke-Type polynomials. Abstr. Appl. Anal. 2012, 2012, 867203. doi:10.1155/2012/867203
  26. Totik V. The Gamma operators in \(L_p\) spaces. Publ. Math. 1985, 32, 43–55.
  27. Varma S., Sucu S., Içöz G. Generalization of Szasz operators involving Brenke type polynomials. Comput. Math. Appl. 2012, 64 (2), 121–127. doi:10.1016/j.camwa.2012.01.025