References
- Acar T. \((p,q)\)-Generalization
of Szász-Mirakyan operators. Math. Methods Appl. Sci. 2016,
39 (16), 2685–2695. doi:10.1002/mma.3721
- Acar T., Aral A., Mohiuddine S.A. On Kantorovich modification of
\((p, q)\)-Bernstein operators.
Iran. J. Sci. Technol. Trans. A Sci. 2017, 42 (3),
1459–1464. doi:10.1007/s40995-017-0154-8
- Acar T., Aral A., Mursaleen M. Approximation by
Baskakov-Durrmeyer operators based on \((p,
q)\)-integers. Math. Slovaca 2018, 68 (4),
897–906. doi:10.1515/ms-2017-0153
- Acar T., Agrawal P.N., Kumar A.S. On a Modification of \((p,q)\)-Szász-Mirakyan Operators.
Complex Anal. Oper. Theory 2018, 12, 155–167.
doi:10.1007/s11785-016-0613-9
- Bernstein S.N. Démonstration du theorème de Weierstrass fondeé
sur le calcul des probabilités. Commun. Kharkov Math. Soc. 1912,
13 (1), 1–2.
- Belen C., Mohiuddine S.A. Generalized weighted statistical
convergence and application. Appl. Math. Comput. 2013,
219 (18), 9821–9826.
- Ilarslan H.G.I., Acar T. Approximation by bivariate \((p,q)\)-Baskakov-Kantorovich
operators. Georgian Math. J. 2016, 25 (3),
397–407. doi:10.1515/gmj-2016-0057.
- Cai Q.-B., Zhoub G. On \((p,
q)\)-analogue of Kantorovich type Bernstein-Stancu-Schurer
operators. Appl. Math. Comput. 2016, 276 (5),
12–20. doi:10.1016/j.amc.2015.12.006
- Cai Q.-B., Cheng W.-T. Convergence of \(\lambda\)-Bernstein operators based on
\((p, q)\)-integers. J. Inequal.
Appl. 2020, 2020 (35).
doi:10.1186/s13660-020-2309-y
- Edely H.H. Osama, Mohiuddine S.A., Noman K.A. Korovkin type
approximation theorems obtained through generalized statistical
convergence. Appl. Math. Lett. 2010, 23 (11),
1382–1387. doi:10.1016/j.aml.2010.07.004
- Gadjiev A.D., Orhan C. Some approximation theorems via
statistical convergence. Rocky Mountain J. Math. 2002,
32 (1), 129–138. doi:10.1216/rmjm/1030539612
- Lupaş A. A \(q\)-analogue of the
Bernstein operator. Seminar on Numerical and Statistical Calculus.
University of Cluj-Napoca. 1987, 9, 85–92.
- Dalmanoğlu Ö., Örkcü M. Approximation Properties of King Type
\((p,q)\)-Bernstein Operators.
Iran. J. Sci. Technol. Trans. A Sci. 2017, 43 (10),
249–254. doi:10.1007/s40995-017-0434-3
- Phillips G.M. Interpolation and Approximation by Polynomials. In:
Dilcher K., Taylor K. (Ed.) CMS Books in Mathematics. Springer New York,
NY, 2003.
- Kadak U., Mishra V.N., Pandey S. Chlodowsky type generalization
of \((p, q)\)-Szász operators involving
Brenke type polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat.
(Esp.) 2018, 112 (1), 1443–1462.
doi:10.1007/s13398-017-0439-y
- Khan A., Sharma V. Approximation by \((p,q)\)-Lupaş Stancu Operators. Iran.
J. Math. Sci. Inform. 2019, 14 (2), 43–60.
- King J.P. Positive linear operators which preserve \(x^2\). Acta Math. Hungar. 2003,
99, 203–208.
doi:10.1023/A:1024571126455
- Khan K., Lobiyal D.K. Bèzier curves based on Lupaş \((p,q)\)-analogue of Bernstein functions in
CAGD. J. Comput. Appl. Math. 2017, 317, 458–477.
doi:10.1016/j.cam.2016.12.016
- Mohiuddine S.A., Acar T., Alotaib A. Construction of a new family
of Bernstein-Kantorovich operators. Math. Methods Appl. Sci. 2017,
40 (18), 7749–7759. doi:org/10.1002/mma.4559
- Mursaleen M., Khan A. Generalized \(q\)-Bernstein-Schurer Operators and Some
Approximation Theorems. J. Funct. Spaces 2013, article ID 719834.
doi:10.1155/2013/719834
- Mursaleen M., Nasiruzzaman Md., Ansari K.J., Alotaibi A.
Generalized \((p,q)\)-Bleimann-Butzer-Hahn operators and
some approximation results. J. Inequal. Appl. 2017,
2017 (1), article ID 310.
doi:10.1186/s13660-017-1582-x
- Mursaleen M., Nasiruzzaman Md., Nurgali A., Abzhapbarov A. Higher
order generalization of Bernstein type operators defined by \((p,q)\)-integers. J. Comput. Anal.
Appl. 2018, 25 (5), 817–829.
- Mursaleen M., Ansari K.J., Khan A. On \((p,q)\)-analogue of Bernstein
Operators. Appl. Math. Comput. 2015, 266, 874–882.
doi:10.1016/j.amc.2015.04.090
- Mursaleen M., Khan F., Khan A. Approximation by \((p,q)\)-Lorentz polynomials on a compact
disk. Complex Anal. Oper. Theory 2016, 10 (8),
1725–1740. doi:10.1007/s11785-016-0553-4
- Fast H. Sur la convergence statistique. Colloq. Math. 1951,
2, 241–244.
- Rao N., Wafi A. \((p,q)\)-Bivariate-Bernstein-Chlowdosky
Operators. Filomat 2018, 32 (2), 369–378.
- Weierstrass K. Über die analytische Darstellbarkeit sogenannter
willkürlicher Functionen einer reellen Veränderlichen. Sitzungsber.
Akad. Berlin 1885, 633–639.