References

  1. Baranetskij Ya.O., Kalenyuk P.I., Kopach M.I., Solomko A.V. The nonlocal multipoint problem with Dirichlet-type conditions for an ordinary differential equation of even order with involution. Mat. Stud. 2020, 54 (1), 64–78. doi:10.30970/ms.54.1.64-78
  2. Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I., Kopach M.I. Nonlocal multipoint problem for ordinary differential equation of even order involution. Mat. Stud. 2018, 49 (1), 80–94. doi:10.15330/ms.49.1.80-94
  3. Baranetskij Ya.O., Demkiv I.I., Ivasiuk I.Ya., Kopach M.I. The nonlocal problem for the \(2n\) differential with unbounded operator coefficients and the involution. Carpathian Math. Publ. 2018, 10 (1), 14–30. doi:10.15330/cmp.10.1.14-30
  4. Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I. Spectral properties of nonself-adjoint nonlocal boundary-value problems for the operator of differentiation of evenorder. Ukr. Math. J. 2018, 70, 851–865. doi:10.1007/s11253-018-1538-4
  5. Baranetskij Ya.Î., Kalenyuk P.². Boundary-value problems with Birkhoff regular but not strongly regular conditions for a second-order differential operator. J. Math. Sci.(N.Y.) 2019, 238 (2), 1–21. doi:10.1007/s10958-019-04214-z
  6. Baranetskij Ya.O., Kalenyuk P.I., Kopach M.I., Solomko A.V. The nonlocal boundary value problem with perturbations of mixed boundary conditions for an elliptic equation with constant coefficients. II. Carpathian Math. Publ. 2020, 12 (1), 173–188. doi:10.15330/cmp.12.1.173-188
  7. Baranetskij Ya.O., Kalenyuk P.I. Nonlocal multipoint problem with multiple spectrum for an ordinary (2n)th order differential equation. J. Math. Sci.(N.Y.) 2020, 246 (2), 152–169. doi:10.1007/s10958-020-04727-y
  8. Baranetskij Ya.O., Kalenyuk P.I. Nonlocal problem with multipoint perturbations of Dirichlet conditions for even-order partial differential equations with constant coefficients. J. Math. Sci.(N.Y.) 2021, 256 (4), 375–397. doi:10.1007/s10958-021-05433-z
  9. Dezin A.A. Differential operator equations: a method of model operators in the theory of boundary value problems. Proc. Steklov Inst. Math. 2000, 229, 1–161.
  10. Dubinskii Yu.A. On some differential-operator equations of arbitrary order. Math. USSR-Sb. 1973, 19 (1), 1–21. doi:10.1070/SM1973v019n01ABEH001672
  11. Gohberg I.C., Krein M.G. Introduction to the theory of linear nonself-adjoint operators in Hilbert Space. Amer. Math. Soc., 1969.
  12. Gorbachuk V.L., Gorbachuk M.L. Boundary value problems for operator differential equations. Naukova Dumka, Kiev, 1984.
  13. Il’in V.A. Existence of a reduced system of eigen- and associated functions for a nonself-adjoint ordinary differential operator. Proc. Steklov Inst. Math. 1976, 142, 148–155.
  14. Ionkin N.I. The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition. Differ. Uravn. 1977, 13 (2), 294–304. (in Russian)
  15. Kalenyuk P.I., Baranetskij Ya.E., Nytrebych Z.N. Generalized method of the separation of variables. Naukova Dumka, Kiev, 1993. (in Russian)
  16. Kalenyuk P.I., Baranetskij Y.O., Kolyasa L.I. A nonlocal problem for a differential operator of even order with involution. J. Appl. Anal. 2020, 26 (2), 297–307.
  17. Katrakhov V.V., Sitnik S.M. The transmutation method and boundary-value problems for singular elliptic equations. Sovrem. Mat. Fundam. Napravl. 2018, 64 (2), 211–426. doi:10.22363/2413-3639-2018-64-2-211-426 (in Russian)
  18. Lions J.-L., Magenes E. Nonhomogeneous boundary value problems and their applications. Mir, Moscow, 1971. (in Russian)
  19. Lomovtsev F.E. A boundary value problem for even-order differential equations whose operator coefficients have variable domains. Diff. Equations 1994, 8, 1310–1322.
  20. Lomovtsev F.E., Yurchuk N.J. Boundary value problems for differential operational equations with variable operational coefficient domains. Diff. Equations 1991, 27 (10), 1754–1766.
  21. Mamedov K.S. Asymptotic behavior of distribution function of eigenvalues of abstract differential operator. Math. Notes 1982, 31, 23–29. doi:10.1007/BF01146263
  22. Romanko V.K. Solvability of boundary value problems for higher order operator-differential equations. Differ. Uravn. 1978, 14 (6), 1081–1092. (in Russian)
  23. Yakubov S.Ya., Karasik B.G., Mamedov K.S. The Fredholmicity of boundary value problems for linear differential-operator equations for higher order. Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Mat. Nauk. 1976, 2, 76–82. (in Russian)
  24. Yakubov S.Ya. Linear operator-differential equations and their applications. Elm, Baku, 1985. (in Russian)