References
- Baranetskij Ya.O., Kalenyuk P.I., Kopach M.I., Solomko A.V. The
nonlocal multipoint problem with Dirichlet-type conditions for an
ordinary differential equation of even order with involution. Mat.
Stud. 2020, 54 (1), 64–78.
doi:10.30970/ms.54.1.64-78
- Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I., Kopach M.I.
Nonlocal multipoint problem for ordinary differential equation of
even order involution. Mat. Stud. 2018, 49 (1),
80–94. doi:10.15330/ms.49.1.80-94
- Baranetskij Ya.O., Demkiv I.I., Ivasiuk I.Ya., Kopach M.I. The
nonlocal problem for the \(2n\)
differential with unbounded operator coefficients and the
involution. Carpathian Math. Publ. 2018, 10 (1),
14–30. doi:10.15330/cmp.10.1.14-30
- Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I. Spectral
properties of nonself-adjoint nonlocal boundary-value problems for the
operator of differentiation of evenorder. Ukr. Math. J. 2018,
70, 851–865. doi:10.1007/s11253-018-1538-4
- Baranetskij Ya.Î., Kalenyuk P.². Boundary-value problems with
Birkhoff regular but not strongly regular conditions for a second-order
differential operator. J. Math. Sci.(N.Y.) 2019,
238 (2), 1–21. doi:10.1007/s10958-019-04214-z
- Baranetskij Ya.O., Kalenyuk P.I., Kopach M.I., Solomko A.V. The
nonlocal boundary value problem with perturbations of mixed boundary
conditions for an elliptic equation with constant coefficients. II.
Carpathian Math. Publ. 2020, 12 (1), 173–188.
doi:10.15330/cmp.12.1.173-188
- Baranetskij Ya.O., Kalenyuk P.I. Nonlocal multipoint problem with
multiple spectrum for an ordinary (2n)th order differential
equation. J. Math. Sci.(N.Y.) 2020, 246 (2),
152–169. doi:10.1007/s10958-020-04727-y
- Baranetskij Ya.O., Kalenyuk P.I. Nonlocal problem with multipoint
perturbations of Dirichlet conditions for even-order partial
differential equations with constant coefficients. J. Math.
Sci.(N.Y.) 2021, 256 (4), 375–397.
doi:10.1007/s10958-021-05433-z
- Dezin A.A. Differential operator equations: a method of model
operators in the theory of boundary value problems. Proc. Steklov
Inst. Math. 2000, 229, 1–161.
- Dubinskii Yu.A. On some differential-operator equations of
arbitrary order. Math. USSR-Sb. 1973, 19 (1),
1–21. doi:10.1070/SM1973v019n01ABEH001672
- Gohberg I.C., Krein M.G. Introduction to the theory of linear
nonself-adjoint operators in Hilbert Space. Amer. Math. Soc., 1969.
- Gorbachuk V.L., Gorbachuk M.L. Boundary value problems for operator
differential equations. Naukova Dumka, Kiev, 1984.
- Il’in V.A. Existence of a reduced system of eigen- and associated
functions for a nonself-adjoint ordinary differential operator.
Proc. Steklov Inst. Math. 1976, 142, 148–155.
- Ionkin N.I. The solution of a certain boundary value problem of
the theory of heat conduction with a nonclassical boundary
condition. Differ. Uravn. 1977, 13 (2), 294–304.
(in Russian)
- Kalenyuk P.I., Baranetskij Ya.E., Nytrebych Z.N. Generalized method
of the separation of variables. Naukova Dumka, Kiev, 1993. (in
Russian)
- Kalenyuk P.I., Baranetskij Y.O., Kolyasa L.I. A nonlocal problem
for a differential operator of even order with involution. J. Appl.
Anal. 2020, 26 (2), 297–307.
- Katrakhov V.V., Sitnik S.M. The transmutation method and
boundary-value problems for singular elliptic equations. Sovrem.
Mat. Fundam. Napravl. 2018, 64 (2), 211–426.
doi:10.22363/2413-3639-2018-64-2-211-426 (in Russian)
- Lions J.-L., Magenes E. Nonhomogeneous boundary value problems and
their applications. Mir, Moscow, 1971. (in Russian)
- Lomovtsev F.E. A boundary value problem for even-order
differential equations whose operator coefficients have variable
domains. Diff. Equations 1994, 8, 1310–1322.
- Lomovtsev F.E., Yurchuk N.J. Boundary value problems for
differential operational equations with variable operational coefficient
domains. Diff. Equations 1991, 27 (10),
1754–1766.
- Mamedov K.S. Asymptotic behavior of distribution function of
eigenvalues of abstract differential operator. Math. Notes 1982,
31, 23–29. doi:10.1007/BF01146263
- Romanko V.K. Solvability of boundary value problems for higher
order operator-differential equations. Differ. Uravn. 1978,
14 (6), 1081–1092. (in Russian)
- Yakubov S.Ya., Karasik B.G., Mamedov K.S. The Fredholmicity of
boundary value problems for linear differential-operator equations for
higher order. Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Mat. Nauk.
1976, 2, 76–82. (in Russian)
- Yakubov S.Ya. Linear operator-differential equations and their
applications. Elm, Baku, 1985. (in Russian)